【題目】已知函數(shù).
(1)若在處取得極小值,求的值;
(2)若在上恒成立,求的取值范圍;
(3)求證:當(dāng)時(shí),.
【答案】(1) ;(2) ;(3)見(jiàn)解析.
【解析】
試題分析:(1)求函數(shù)的導(dǎo)數(shù),由求之即可;(2)分、、分別討論函數(shù)的單調(diào)性,由單調(diào)性求出函數(shù)在區(qū)間上的最小值,由求之即可;(3)由(2)知令,當(dāng)時(shí),,(當(dāng)且僅當(dāng)時(shí)取“”)當(dāng)時(shí),,令代入相加即可.
試題解析: (1)∵的定義域?yàn)?/span>,,
∵在處取得極小值,∴,即.
此時(shí),經(jīng)驗(yàn)證是的極小值點(diǎn),故.
(2)∵,
①當(dāng)時(shí),,∴在上單調(diào)遞減,
∴當(dāng)時(shí),矛盾.
②當(dāng)時(shí),,
令,得;,得.
(ⅰ)當(dāng),即時(shí),
時(shí),,即遞減,∴矛盾.
(ⅱ)當(dāng),即時(shí),
時(shí),,即遞增,∴滿足題意.
綜上,.
(3)證明:由(2)知令,當(dāng)時(shí),,
(當(dāng)且僅當(dāng)時(shí)取“”)
∴當(dāng)時(shí),.
即當(dāng),有
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】心理學(xué)家發(fā)現(xiàn),學(xué)生的接受能力依賴于老師引入概念和描述問(wèn)題所用的時(shí)間,上課開(kāi)始時(shí),學(xué)生的興趣激增,中間有一段不太長(zhǎng)的時(shí)間,學(xué)生的興趣保持較理想的狀態(tài),隨后學(xué)生的注意力開(kāi)始分散,并趨于穩(wěn)定.分析結(jié)果和實(shí)驗(yàn)表明,設(shè)提出和講述概念的時(shí)間為(單位:分),學(xué)生的接受能力為 (值越大,表示接受能力越強(qiáng)),
(1)開(kāi)講后多少分鐘,學(xué)生的接受能力最強(qiáng)?能維持多少時(shí)間?
(2)試比較開(kāi)講后5分鐘、20分鐘、35分鐘,學(xué)生的接受能力的大。唬3)若一個(gè)數(shù)學(xué)難題,需要56的接受能力以及12分鐘時(shí)間,老師能否及時(shí)在學(xué)生一直達(dá)到所需接受能力的狀態(tài)下講述完這個(gè)難題?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分14分)
在四棱錐P-ABCD中,BC∥AD,PA⊥PD,AD=2BC,AB=PB, E為PA的中點(diǎn).
(1)求證:BE∥平面PCD;
(2)求證:平面PAB⊥平面PCD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)若,求函數(shù)的圖象在處的切線方程;
(2)若,試討論方程的實(shí)數(shù)解的個(gè)數(shù);
(3)當(dāng)時(shí),若對(duì)于任意的,都存在,使得,求滿足條件的正整數(shù)的取值的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,游客從某旅游景區(qū)的景點(diǎn)A處下山至C處有兩種路徑.一種是從A沿直線步行到C,另一種是先從A沿索道乘纜車到B,然后從B沿直線步行到C.現(xiàn)有甲、乙兩位游客從A處下山,甲沿AC勻速步行,速度為50m/min.在甲出發(fā)2min后,乙從A乘纜車到B,在B處停留1min后,再?gòu)腂勻速步行到C.假設(shè)纜車勻速直線運(yùn)動(dòng)的速度為130m/min,山路AC長(zhǎng)為1260m,經(jīng)測(cè)量,,.
(Ⅰ)問(wèn)乙出發(fā)多少分鐘后,乙在纜車上與甲的距離最短?
(Ⅱ)為使兩位游客在處互相等待的時(shí)間不超過(guò)分鐘,乙步行的速度應(yīng)控制在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=-3x2+a(6-a)x+6.
(1)解關(guān)于a的不等式f(1)>0;
(2)若不等式f(x)>b的解集為(-1,3),求實(shí)數(shù)a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),點(diǎn)是圓上的任意一點(diǎn),線段的垂直平分線與直線交于點(diǎn).
(Ⅰ)求點(diǎn)的軌跡方程;
(Ⅱ)若直線與點(diǎn)的軌跡有兩個(gè)不同的交點(diǎn)和,且原點(diǎn)總在以為直徑的圓的內(nèi)部,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓短軸的左右兩個(gè)端點(diǎn)分別為A,B,直線與x軸、y軸分別交于兩點(diǎn)E,F(xiàn),交橢圓于兩點(diǎn)C,D.
(1)若,求直線的方程;
(2)設(shè)直線AD,CB的斜率分別為,若,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,以Ox軸為始邊作兩個(gè)銳角α,β,它們的終邊分別與單位圓相交于A,B兩點(diǎn),已知A,B的橫坐標(biāo)分別為,.求:
(1)tan(α+β)的值;
(2)α+2β的大小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com