9.在區(qū)間$[{0,\frac{π}{2}}]$上任選兩個(gè)數(shù)x和y,則y<sinx的概率為( 。
A.$\frac{2}{π^2}$B.$1-\frac{4}{π^2}$C.$\frac{4}{π^2}$D.$1-\frac{2}{π^2}$

分析 該題涉及兩個(gè)變量,故是與面積有關(guān)的幾何概型,分別表示出滿足條件的面積和整個(gè)區(qū)域的面積,最后利用概率公式解之即可.

解答 解:在區(qū)間$[{0,\frac{π}{2}}]$上任選兩個(gè)數(shù)x和y,區(qū)域的面積為$\frac{{π}^{2}}{4}$,
滿足y<sinx的區(qū)域的面積為${∫}_{0}^{\frac{π}{2}}sinxdx$=(-cosx)${|}_{0}^{\frac{π}{2}}$=1,
∴所求概率為$\frac{4}{{π}^{2}}$.
故選C.

點(diǎn)評(píng) 本題主要考查了與面積有關(guān)的幾何概率的求解,解題的關(guān)鍵是準(zhǔn)確求出區(qū)域的面積,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖1,已知矩形ABCD中,$AB=2,BC=2\sqrt{3}$,點(diǎn)E是邊BC上的點(diǎn),且$CE=\frac{1}{3}CB$,DE與AC相交于點(diǎn)H.現(xiàn)將△ACD沿AC折起,如圖2,點(diǎn)D的位置記為D',此時(shí)$D'E=\frac{{\sqrt{30}}}{3}$.
(Ⅰ)求證:D'H⊥平面ABC;
(Ⅱ)求二面角H-D'E-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=2lnx+x2-ax+2(a∈R).
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若存在x0∈(0,1],使得對(duì)任意的a∈[-2,0),不等式f(x0)>a2+3a+2-2mea(a+1)(其中e是自然對(duì)數(shù)的底數(shù))都成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,側(cè)棱垂直于底面的三棱柱ABC-A1B1C1中,D,E分別是AC,CC1的中點(diǎn),$AB=BC=A{A_1}=\frac{{\sqrt{2}}}{2}AC$.
(1)證明:B1C∥平面A1BD;
(2)求二面角D-A1B-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)y=cosx與y=sin(2x+φ)(0≤φ≤π),它們的圖象有一個(gè)橫坐標(biāo)為$\frac{π}{3}$的交點(diǎn),則φ=( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=2x+ax2+bcosx在點(diǎn)$(\frac{π}{2},f(\frac{π}{2}))$處的切線方程為$y=\frac{3π}{4}$.
(Ⅰ)求a,b的值,并討論f(x)在$[{0,\frac{π}{2}}]$上的增減性;
(Ⅱ)若f(x1)=f(x2),且0<x1<x2<π,求證:$f'(\frac{{{x_1}+{x_2}}}{2})<0$.
(參考公式:$cosθ-cosφ=-2sin\frac{θ+φ}{2}sin\frac{θ-φ}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.設(shè)f(x)=xex(e為自然對(duì)數(shù)的底數(shù)),g(x)=(x+1)2
(I)記$F(x)=\frac{f(x)}{g(x)}$,討論函F(x)單調(diào)性;
(II)令G(x)=af(x)+g(x)(a∈R),若函數(shù)G(x)有兩個(gè)零點(diǎn).
(i)求參數(shù)a的取值范圍;
(ii)設(shè)x1,x2是G(x)的兩個(gè)零點(diǎn),證明x1+x2+2<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)M為邊長(zhǎng)為4的正方形ABCD的邊BC的中點(diǎn),N為正方形區(qū)域內(nèi)任意一點(diǎn)(含邊界),則$\overrightarrow{AM}$•$\overrightarrow{AN}$的最大值為( 。
A.32B.24C.20D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知集合M={x|x2+x-2<0},N={x|log${\;}_{\frac{1}{2}}$x>-1},則M∩N=( 。
A.{x|-2<x<1}B.{x|0<x<1}C.{x|x>2}D.

查看答案和解析>>

同步練習(xí)冊(cè)答案