3.已知圓C:(x+1)2+y2=4和圓外一點A(1,2$\sqrt{3}$).
(1)若直線m經(jīng)過原點O,且圓C上恰有三個點到直線m的距離為1,求直線m的方程;
(2)若經(jīng)過A的直線l與圓C相切,求切線l的方程.

分析 (1)圓C的圓心為(-1,0),半徑r=2,圓C上恰有三個點到直線m的距離為1,則圓心到直線m的距離恰為1,由于直線m經(jīng)過原點,圓心到直線m的距離最大值為1.所以滿足條件的直線就是經(jīng)過原點且垂直于OC的直線,故直線方程可求;
(2)先假設(shè)直線方程,再利用點線距離等于半徑求解,需注意斜率不存在時也成立.

解答 解:(1)圓C的圓心為(-1,0),半徑r=2,圓C上恰有三個點到直線m的距離為1
則圓心到直線m的距離恰為1…(2分)
設(shè)直線方程為y=kx,d=$\frac{|-k-0|}{\sqrt{1{+k}^{2}}}$=1,k無解…(3分)
直線斜率不存在時,直線方程為x=0顯然成立,所以所求直線為x=0…(5分)
(2)設(shè)直線方程為y-2$\sqrt{3}$=k(x-1),d=$\frac{|-2k+2\sqrt{3}|}{\sqrt{1{+k}^{2}}}$=2,k=$\frac{\sqrt{3}}{3}$,
所求直線為y-2$\sqrt{3}$=$\frac{\sqrt{3}}{3}$(x-1),即$\sqrt{3}$x-3y+5$\sqrt{3}$=0…(6分)
斜率不存在時,直線方程為x=1…(7分).

點評 本題主要考查直線與圓軛位置關(guān)系,要充分利用圓的特殊性簡化解題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.定義在R上的奇函數(shù)f(x) 滿足f(x-2)=-f(x),則下列結(jié)論正確的是( 。
A.f(-2012)>f(2014)B.f(-2012)<f(2014)C.f(-2012)=f(2014)D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若非零實數(shù)a,b,c滿足a>b>c,則一定成立的不等式是( 。
A.ac>bcB.ab>acC.a-|c|>b-|c|D.$\frac{1}{a}<\frac{1}<\frac{1}{c}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在△ABC中,角A,B,C所對的邊分別為a,b,c,若a2+c2=b2+$\sqrt{2}$ac.
(1)求B的大;
(2)求$\sqrt{2}$cosA+cosC的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在△ABC中,角A,B,C的對邊分別是a,b,c,且acosB-bcosA=$\frac{1}{2}$c.
(Ⅰ)求證:tanA=3tanB;
(Ⅱ)若B=45°,b=$\sqrt{5}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在平面直角坐標系中,定點M(1,0),兩動點A,B在雙曲線x2-3y2=3的右支上,則cos∠AMB的最小值是$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)復(fù)數(shù)z1=3+2i,z2=1+bi,其中b∈R,i是虛數(shù)單位.
(1)若b=1,z=z1-z2,求z的共軛復(fù)數(shù)$\overline{z}$;
(2)若z1•z2是純虛數(shù),求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖,一個簡單幾何體的正視圖和側(cè)視圖都是邊長為2的等邊三角形,若該簡單幾何體的體積是$\frac{{2\sqrt{3}}}{3}$,則其底面周長為( 。
A.$2({\sqrt{3}+1})$B.$2({\sqrt{5}+1})$C.$2({\sqrt{2}+2})$D.$\sqrt{5}$+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=sin2x+2sinxcosx+3cos2x.
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(3)當(dāng)x∈$[\frac{π}{4},\frac{π}{2}]$時,求函數(shù)f(x)的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案