已知F1、F2是橢圓+=1的兩焦點,經(jīng)點F2的的直線交橢圓于點A、B,若|AB|=5,則|AF1|+|BF1|等于(   )
A.11        B.10        C.9       D.8
A.

試題分析:由題意可得:,
.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,矩形ABCD中,|AB|=4,|BC|=2,E,F(xiàn),M,N分別是矩形四條邊的中點,G,H分別是線段ON,CN的中點.
(1)證明:直線EG與FH的交點L在橢圓W:上;
(2)設(shè)直線l:與橢圓W:有兩個不同的交點P,Q,直線l與矩形ABCD有兩個不同的交點S,T,求的最大值及取得最大值時m的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的左、右頂點分別是、,左、右焦點分別是、.若,,成等比數(shù)列,求此橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知一個圓的圓心為坐標原點,半徑為2.從這個圓上任意一點P向x軸作垂線段PP′,求線段PP′中點M的軌跡.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

自A(4,0)引圓x2+y2=4的割線ABC,求弦BC中點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

雙曲線與橢圓的離心率互為倒數(shù),則( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知點M(,0),橢圓+y2=1與直線y=k(x+)交于點A、B,則△ABM的周長為(  )
A.4      B.8     C.12     D.16

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若橢圓=1與雙曲線=1(m,n,p,q均為正數(shù))有共同的焦點F1,F(xiàn)2,P是兩曲線的一個公共點,則·=(  )
A.p2-m2B.p-mC.m-pD.m2-p2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

的切線與x軸正半軸,y軸正半軸圍成一個三角形,當該三角形面積最小時,切點為P(如圖),雙曲線過點P且離心率為.
(1)求的方程;
(2)橢圓過點P且與有相同的焦點,直線的右焦點且與交于A,B兩點,若以線段AB為直徑的圓心過點P,求的方程.

查看答案和解析>>

同步練習冊答案