已知橢圓的左、右頂點分別是,左、右焦點分別是、.若,成等比數(shù)列,求此橢圓的離心率.

試題分析:直接利用橢圓的定義,結(jié)合,,成等比數(shù)列,即可求出橢圓的離心率.
試題解析:由橢圓的定義知, , , ,
,成等比數(shù)列,因此,
整理得,兩邊同除 ,得,
解得
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓Γ:(a>b>0)經(jīng)過D(2,0),E(1,)兩點.
(1)求橢圓Γ的方程;
(2)若直線與橢圓Γ交于不同兩點A,B,點G是線段AB中點,點O是坐標原點,設(shè)射線OG交Γ于點Q,且.
①證明:
②求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在平面直角坐標系中,設(shè)橢圓,其中,過橢圓內(nèi)一點的兩條直線分別與橢圓交于點,且滿足,,其中為正常數(shù). 當點恰為橢圓的右頂點時,對應(yīng)的.
(1)求橢圓的離心率;
(2)求的值;
(3)當變化時,是否為定值?若是,請求出此定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,設(shè)橢圓的左右焦點為,上頂點為,點關(guān)于對稱,且
(1)求橢圓的離心率;
(2)已知是過三點的圓上的點,若的面積為,求點到直線距離的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在同一直角坐標系中,經(jīng)過伸縮變換
x′=5x
y′=3y
后,曲線C變?yōu)榍x′2+y′2=1,則曲線C的方程為( 。
A.25x2+9y2=1B.9x2+25y2=1C.25x+9y=1D.
x2
25
+
y2
9
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知直線l:y=mx+1與曲線C:ax2+y2=2(m、a∈R)交于A、B兩點,O為坐標原點.
(1)當m=0時,有∠AOB=
π
3
,求曲線C的方程;
(2)當實數(shù)a為何值時,對任意m∈R,都有
OA
OB
為定值T?指出T的值;
(3)已知點M(0,-1),當a=-2,m變化時,動點P滿足
MP
=
OA
+
OB
,求動點P的縱坐標的變化范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓C:(x-4)2+(y-m)2=16(m∈N*),直線4x-3y-16=0過橢圓E:=1(a>b>0)的右焦點,且被圓C所截得的弦長為,點A(3,1)在橢圓E上.
(1)求m的值及橢圓E的方程;
(2)設(shè)Q為橢圓E上的一個動點,求·的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

的切線與x軸正半軸,y軸正半軸圍成一個三角形,當該三角形面積最小時,切點為P(如圖).
(1)求點P的坐標;
(2)焦點在x軸上的橢圓C過點P,且與直線交于A,B兩點,若的面積為2,求C的標準方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知F1、F2是橢圓+=1的兩焦點,經(jīng)點F2的的直線交橢圓于點A、B,若|AB|=5,則|AF1|+|BF1|等于(   )
A.11        B.10        C.9       D.8

查看答案和解析>>

同步練習(xí)冊答案