3.在中學(xué)生綜合素質(zhì)評價(jià)某個(gè)維度的測評中,分“優(yōu)秀、合格、尚待改進(jìn)”三個(gè)等級進(jìn)行學(xué)生互評,某校高二年級有男生500人,女生400人,為了了解性別對維度測評結(jié)果的影響,采用分層抽樣方法從高二年級抽取了45名學(xué)生的測評結(jié)果,并作出頻率統(tǒng)計(jì)表如表:
表一:男生測評結(jié)果統(tǒng)計(jì)
等級優(yōu)秀合格尚待改進(jìn)
頻數(shù)15x5
表二:女生測評結(jié)果統(tǒng)計(jì)
等級優(yōu)秀合格尚待改進(jìn)
頻數(shù)153y
(1)計(jì)算x,y的值;
(2)由表一表二中統(tǒng)計(jì)數(shù)據(jù)完成2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為“測評結(jié)果優(yōu)秀與性別有關(guān)”.
男生女生總計(jì)
優(yōu)秀
非優(yōu)秀
總計(jì)
參考數(shù)據(jù):
P(K2≥k00.100.0500.0250.0100.001
k02.7063.8415.0246.63510.828
(參考公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d).

分析 (1)根據(jù)分層抽樣的定義和男生所占的比例列出方程,求出m的值,再由條件求出x、y的值;
(2)由(1)列出列聯(lián)表,根據(jù)數(shù)據(jù)和公式求出K2的觀測值,由表格和獨(dú)立性檢驗(yàn)即可得到答案.

解答 解:(1)設(shè)從高一年級男生中抽出m人,
則$\frac{m}{500}=\frac{45}{500+400}$,解得m=25,
∴x=25-20=5,y=20-18=2.(4分)
(2)2×2列聯(lián)表如下:

 男生女生總計(jì)
優(yōu)秀151530
非優(yōu)秀10515
總計(jì)252045
(7分)
∵${K^2}=\frac{{45×{{(15×5-15×10)}^2}}}{30×15×25×20}=\frac{{45×{{15}^2}×{5^2}}}{30×15×25×20}=\frac{9}{8}=1.125<2.706$,(10分)
∴沒有90%的把握認(rèn)為“測評結(jié)果優(yōu)秀與性別有關(guān)”.(12分)

點(diǎn)評 本題考查了分層抽樣的定義,列聯(lián)表、獨(dú)立性檢驗(yàn)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=3sin(2x-$\frac{π}{3}}$),x∈R.
(1)求f(${\frac{π}{4}}$)的值;
(2)設(shè)α∈(0,$\frac{π}{2}}$),β∈(${\frac{π}{2}$,π),f(${\frac{2π}{3}$-$\frac{α}{2}}$)=$\frac{9}{5}$,f(${\frac{β}{2}$+$\frac{5π}{12}}$)=-$\frac{36}{13}$,求cos(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=xlnx+ax2-1,且f′(1)=-1.
(1)求f(x)的解析式;
(2)證明:函數(shù)y=f(x)-xex+x2的圖象在直線y=-x-1的圖象下方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.可以將圓x2+y2=1變?yōu)闄E圓$\frac{{x{'^2}}}{4}$+$\frac{{y{'^2}}}{9}$=1的伸縮變換為( 。
A.$\left\{\begin{array}{l}x=2x'\\ y=3y'\end{array}\right.$B..$\left\{\begin{array}{l}x=\frac{1}{2}x'\\ y=\frac{1}{3}y'\end{array}\right.$C..$\left\{\begin{array}{l}x=4x'\\ y=9y'\end{array}\right.$D..$\left\{\begin{array}{l}x=\frac{1}{4}x'\\ y=\frac{1}{9}y'\end{array}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列函數(shù)中,在(0,2)上為增函數(shù)的是( 。
A.y=-3x+1B.y=|x+2|C.y=$\frac{4}{x}$D.y=x2-4x+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)f(x)=$\frac{cosx}{sinx+\sqrt{2}}$(x∈[-$\frac{π}{2}$,$\frac{π}{2}$])的單調(diào)遞減區(qū)間是(-$\frac{π}{4}$,$\frac{π}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知直線l的極坐標(biāo)方程為ρsin(θ+$\frac{π}{6}}$)=1,圓C的參數(shù)方程為$\left\{\begin{array}{l}x=2+2cosθ\\ y=-\sqrt{3}+2sinθ\end{array}$(θ為參數(shù)).則直線l與圓C相交所得弦長為$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖所示的幾何體中,三棱柱ABC-A1B1C1為直三棱柱,ABCD為平行四邊形,AD=2CD,∠ADC=60°.
(1)若AA1=AC,求證:AC1⊥平面A1B1CD;
(2)若CD=1,當(dāng)$\frac{A{A}_{1}}{AC}$為多少時(shí),二面角C-A1D-C1的余弦值為$\frac{\sqrt{2}}{4}$?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在平行四邊形ABCD中,BC=2AB,∠ABC=60°,四邊形BEFD是矩形,且BE=BA,平面BEFD⊥平面ABCD.
(1)求證:AE⊥CF;
(2)求二面角A-EF-C的平面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案