6.橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1的一條弦被點(diǎn)(1,1)平分,則此弦所在的直線方程是( 。
A.4x-9y+5=0B.9x-4y-5=0C.9x+4y-13=0D.4x+9y-13=0

分析 設(shè)直線與橢圓相交于A(x1,y1),B(x2,y2).$\frac{{x}_{1}^{2}}{9}$+$\frac{{y}_{1}^{2}}{4}$=1,$\frac{{x}_{2}^{2}}{9}$+$\frac{{y}_{2}^{2}}{4}$=1,相減再利用$\frac{{x}_{1}+{x}_{2}}{2}$=1,$\frac{{y}_{1}+{y}_{2}}{2}$=1,$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=k,即可得出.

解答 解:設(shè)直線與橢圓相交于A(x1,y1),B(x2,y2).
$\frac{{x}_{1}^{2}}{9}$+$\frac{{y}_{1}^{2}}{4}$=1,$\frac{{x}_{2}^{2}}{9}$+$\frac{{y}_{2}^{2}}{4}$=1,
相減可得:$\frac{({x}_{1}+{x}_{2})({x}_{1}-{x}_{2})}{9}$+$\frac{({y}_{1}+{y}_{2})({y}_{1}-{y}_{2})}{4}$=0,
又$\frac{{x}_{1}+{x}_{2}}{2}$=1,$\frac{{y}_{1}+{y}_{2}}{2}$=1,$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=k,
∴2×4+9×2k=0,解得k=-$\frac{4}{9}$.
∴此弦所在的直線方程是y-1=$-\frac{4}{9}$(x-1),化為:4x+9y-13=0.
故選:D.

點(diǎn)評 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、中點(diǎn)坐標(biāo)公式、斜率計算公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=x3+3x-1的零點(diǎn)所在的區(qū)間是(  )
A.[-1,0]B.[1,2]C.[2,3]D.[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),其一個頂點(diǎn)為B(0,4),離心率為$\frac{\sqrt{5}}{5}$,直線l交橢圓C于M,N兩點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若直線l的方程為y=x-4,求弦MN的長;
(3)如果△BMN的重心恰好為橢圓的右焦點(diǎn)F,求直線l方程的一般式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列四個判斷
①某校高二一班和高二二班的人數(shù)分別是m,n,某次測試數(shù)學(xué)平均分分別是a,b,則這兩個班的數(shù)學(xué)平均分為$\frac{a+b}{2}$
②10名工人生產(chǎn)同一種零件,生產(chǎn)的件數(shù)分別是15,17,14,10,15,17,17,16,14,12,設(shè)其平均數(shù)為a,中位數(shù)為b,眾數(shù)為c,則c>a>b
③設(shè)m∈R,命題“若a>b,則am2>bm2”的逆否命題為假命題
④線性相關(guān)系數(shù)r越大,兩個變量的線性相關(guān)性越強(qiáng),反之,線性相關(guān)性越弱
其中正確的個數(shù)有(  )
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知雙曲線過點(diǎn)P(4,1),且它的兩條漸近線方程為x±2y=0
(1)求雙曲線的方程
(2)寫出它的頂點(diǎn)坐標(biāo),焦點(diǎn)坐標(biāo),并求離心率e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在三棱錐A-BCD中,AD=BD,∠ABC=90°,點(diǎn)E,F(xiàn)分別在棱AB,AC上,點(diǎn)G為棱AD的中點(diǎn),平面EFG∥平面BCD.證明:
(Ⅰ)EF=$\frac{1}{2}$BC;
(Ⅱ)平面EFD⊥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{3}^{1-x},x≤1}\\{1-lo{g}_{3}x,x>1}\end{array}\right.$,則滿足f(x)≤3的x的取值范圍是(  )
A.[0,+∞)B.[$\frac{1}{9}$,3]C.[0,3]D.[$\frac{1}{9}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知兩定點(diǎn)A(-2,0)和B(2,0),動點(diǎn)P(x,y)在直線l:y=x+3上移動,橢圓C以A,B為焦點(diǎn)且經(jīng)過點(diǎn)P,則橢圓C的離心率的最大值為( 。
A.$\frac{2}{\sqrt{26}}$B.$\frac{4}{\sqrt{26}}$C.$\frac{2}{\sqrt{13}}$D.$\frac{3}{\sqrt{13}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.用0,1,2,3,4,5,6可以組成420個無重復(fù)數(shù)字的四位偶數(shù).

查看答案和解析>>

同步練習(xí)冊答案