【題目】在平面直角坐標(biāo)系xOy中,射線l(x≥0),曲線C1的參數(shù)方程為為參數(shù)),曲線C2的方程為;以原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C3的極坐標(biāo)方程為

1)寫出射線l的極坐標(biāo)方程以及曲線C1的普通方程;

2)已知射線lC2交于OM,與C3交于O,N,求的值.

【答案】1,2

【解析】

1)根據(jù)直線極坐標(biāo)方程的形式可得射線,消去曲線參數(shù)方程中的參數(shù)可得普通方程;(2)將圓的普通方程化為極坐標(biāo)方程,設(shè)點(diǎn)對應(yīng)的極徑分別為,然后根據(jù)求解可得所求.

1)依題意,因?yàn)樯渚,故射線

消去方程中的參數(shù)可得,

所以曲線的普通方程為:

2)曲線的方程為,即

代入上式可得曲線的極坐標(biāo)方程為,

設(shè)點(diǎn)對應(yīng)的極徑分別為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右兩個焦點(diǎn)分別為,離心率,短軸長為2.

(1)求橢圓的方程;

(2)點(diǎn)為橢圓上的一動點(diǎn)(非長軸端點(diǎn)),的延長線與橢圓交于點(diǎn), 的延長線與橢圓交于點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分14分)如圖,在四面體中,,點(diǎn)的中點(diǎn),點(diǎn)在線段上,且

1)若平面,求實(shí)數(shù)的值;

2)求證:平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】制訂投資計(jì)劃時,不僅要考慮可能獲得的盈利,而且要考慮可能出現(xiàn)的虧損.某投資人打算投資甲、乙兩個項(xiàng)目.根據(jù)預(yù)測,甲、乙項(xiàng)目可能的最大盈利分別為,可能的最大虧損率分別為.投資人計(jì)劃投資金額不超過億元,要求確?赡艿馁Y金虧損不超過億元,問投資人對甲、乙兩個項(xiàng)目各投資多少億元,才能使可能的盈利最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給定實(shí)數(shù) t,已知命題 p:函數(shù) 有零點(diǎn);命題 q: x∈[1,+∞) ≤4-1.

(Ⅰ)當(dāng) t=1 時,判斷命題 q 的真假;

(Ⅱ)若 pq 為假命題,求 t 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,四邊形為正方形,,,.

(1)證明:平面平面.

(2)若平面,二面角,三棱錐的外接球的球心為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】互聯(lián)網(wǎng)時代的今天,移動互聯(lián)快速發(fā)展,智能手機(jī)技術(shù)不斷成熟,價格卻不斷下降,成為了生活中必不可少的工具中學(xué)生是對新事物和新潮流反應(yīng)最快的一個群體之一逐漸地,越來越多的中學(xué)生開始在學(xué)校里使用手機(jī)手機(jī)特別是智能手機(jī)在讓我們的生活更便捷的同時會帶來些問題,同學(xué)們?yōu)榱私馐謾C(jī)在中學(xué)生中的使用情況,對本校高二年級100名同學(xué)使用手機(jī)的情況進(jìn)行調(diào)查針對調(diào)查中獲得的“每天平均使用手機(jī)進(jìn)行娛樂活動的時間”進(jìn)行分組整理得到如圖4的餅圖、注:圖中2,單位:小時代表分組為i的情況

求餅圖中a的值;

假設(shè)同一組中的每個數(shù)據(jù)可用給定區(qū)間的中點(diǎn)值代替,試估計(jì)樣本中的100名學(xué)生每天平均使用手機(jī)的平均時間在第幾組?只需寫出結(jié)論

從該校隨機(jī)選取一名同學(xué),能否根據(jù)題目中所給信息估計(jì)出這名學(xué)生每天平均使用手機(jī)進(jìn)行娛樂活動小于小時的概率,若能,請算出這個概率;若不能,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的上頂點(diǎn)為A,右頂點(diǎn)為B.已知O為原點(diǎn)).

1)求橢圓的離心率;

2)設(shè)點(diǎn),直線與橢圓交于兩個不同點(diǎn)M,N,直線AMx軸交于點(diǎn)E,直線ANx軸交于點(diǎn)F,若.求證:直線l經(jīng)過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),則的最小值為______.

查看答案和解析>>

同步練習(xí)冊答案