若△ABC的三個(gè)內(nèi)角滿足sinA:sinB:sinC=5:11:13,則△ABC( 。
A、一定是銳角三角形B、一定是直角三角形C、一定是鈍角三角形D、可能是銳角三角形,也可能是鈍角三角形
分析:先根據(jù)正弦定理及題設(shè),推斷a:b:c=5:11:13,再通過(guò)余弦定理求得cosC的值小于零,推斷C為鈍角.
解答:解:∵根據(jù)正弦定理,
A
sina
=
B
sinb
=
C
sinc

又sinA:sinB:sinC=5:11:13
∴a:b:c=5:11:13,
設(shè)a=5t,b=11t,c=13t(t≠0)
∵c2=a2+b2-2abcosC
∴cosC=
a2+b2-c2
2ab
=
25t2+121t2-169t2
2×5t×11t
=-
23
110
<0
∴角C為鈍角.
故選C
點(diǎn)評(píng):本題主要考查余弦定理的應(yīng)用.注意與正弦定理的巧妙結(jié)合.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

3、若△ABC的三個(gè)內(nèi)角滿足sinA:sinB:sinC=5:12:13,則△AB形狀一定是
直角
角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若△ABC的三個(gè)內(nèi)角滿足sinA:sinB:sinC=2:3:4,則△ABC( 。
A、一定是直角三角形B、一定是鈍角三角形C、一定是銳角三角形D、可能是銳角三角形,也可能是鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若△ABC的三個(gè)內(nèi)角滿足sinA:sinB:sinC=5:11:13,則△ABC是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若△ABC的三個(gè)內(nèi)角成等差數(shù)列,三邊成等比數(shù)列,則△ABC是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•盧灣區(qū)二模)若△ABC的三個(gè)內(nèi)角的正弦值分別等于△A'B'C'的三個(gè)內(nèi)角的余弦值,則△ABC的三個(gè)內(nèi)角從大到小依次可以為
4
π
8
,
π
8
;
4
,另兩角不惟一,但其和為
π
4
4
,
π
8
,
π
8
;
4
,另兩角不惟一,但其和為
π
4
(寫(xiě)出滿足題設(shè)的一組解).

查看答案和解析>>

同步練習(xí)冊(cè)答案