設(shè)數(shù)列{an}是等比數(shù)列,函數(shù)y=x2-x-2的兩個(gè)零點(diǎn)是a2,a3,則a1a4=( 。
A、2B、1C、-1D、-2
考點(diǎn):等比數(shù)列的通項(xiàng)公式
專題:等差數(shù)列與等比數(shù)列
分析:由韋達(dá)定理和等比數(shù)列的性質(zhì)可得a1a4=a2a3=-2
解答: 解:∵函數(shù)y=x2-x-2的兩個(gè)零點(diǎn)是a2,a3,
∴a2a3=-2
又∵數(shù)列{an}是等比數(shù)列,
∴a1a4=a2a3=-2
故選:D
點(diǎn)評(píng):本題考查等比數(shù)列的性質(zhì)和韋達(dá)定理,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓Г的方程為
x2
a2
+
y2
b2
=1(a>b>0)點(diǎn)A,B分別為Г上的兩個(gè)動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),且OA⊥OB;其中OA,OB稱為橢圓的一條半徑.
(1)求證:
1
|OA|2
+
1
|OB|2
=
1
a2
+
1
b2
;|OA|2+|OB|2的最小值為
4a2b2
a2+b2
;
(2)過點(diǎn)O作OH⊥AB于H,求證:|OH|=
ab
a2+b2
;S△OAB的最小值是
a2b2
a2+b2
;
(3)將(1)(2)的結(jié)論推廣至雙曲線,結(jié)論是否依然成立,若成立,證明你的結(jié)論;若不成立,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知函數(shù)y=log24x圖象上的兩點(diǎn)A,B和函數(shù)y=log2x上的點(diǎn) C,線段AC平行于y軸,三角形ABC為正三角形時(shí),點(diǎn)B的坐標(biāo)為(p,q),則實(shí)數(shù)p的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若2-m與m-3同號(hào),則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在0°~360°之間,與角-150°終邊相同的角是(  )
A、150°B、-30°
C、30°D、210°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x,y的不等式組
x≤0
x+y≥0
kx-y+1≥0
表示的平面區(qū)域是直角三角形區(qū)域,則正數(shù)k的值為(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=1-2x(x≤0)的值域是(  )
A、(0,1)
B、(-∞,1)
C、(0,1]
D、[0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cos(2α-β)=-
11
14
,sin(α-2β)=
4
3
7
,0<β<
π
4
<α<
π
2

(1)求cos(3α-3β)
(2)求α+β的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的增函數(shù),且對(duì)于任意的實(shí)數(shù)x都有f(x)=-f(2-x)成立,如果實(shí)數(shù)m,n滿足不等式組
f(m2-6m-5)+f(8n-n2)≤0
0≤n≤7
,則m+2n的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案