討論方程()所表示的曲線類型.
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知橢圓,橢圓以的長軸為短軸,且與有相同的離心率.
(1)求橢圓的方程;
(2)設(shè)O為坐標(biāo)原點,點A,B分別在橢圓和上,,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知動圓P(圓心為點P)過定點A(1,0),且與直線相切。記動點P的軌跡為C。
(Ⅰ)求軌跡C的方程;
(Ⅱ)設(shè)過點P的直線l與曲線C相切,且與直線相交于點Q。試研究:在x軸上是否存在定點M,使得以PQ為直徑的圓恒過點M?若存在,求出點M的坐標(biāo);若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)
如圖,已知橢圓的焦點為、,離心率為,過點的直線交橢圓于、兩點.
(1)求橢圓的方程;
(2)①求直線的斜率的取值范圍;
②在直線的斜率不斷變化過程中,探究和是否總相等?若相等,請給出證明,若不相等,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線及點,直線的斜率為1且不過點P,與拋物線交于A,B兩點。
(1) 求直線在軸上截距的取值范圍;
(2) 若AP,BP分別與拋物線交于另一點C,D,證明:AD、BC交于定點。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知點是橢圓的右頂點,若點在橢圓上,且滿足.(其中為坐標(biāo)原點)
(1)求橢圓的方程;
(2)若直線與橢圓交于兩點,當(dāng)時,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
.已知雙曲線的中心在原點,對稱軸為坐標(biāo)軸,一條漸近線方程為,右焦點,雙曲線的實軸為,為雙曲線上一點(不同于),直線,分別與直線交于兩點
(1)求雙曲線的方程;
(2)是否為定值,若為定值,求出該值;若不為定值,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
已知橢圓過點,且離心率為.
(1)求橢圓的方程;
(2)為橢圓的左右頂點,點是橢圓上異于的動點,直線分別交直線于兩點.
證明:以線段為直徑的圓恒過軸上的定點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com