【題目】如圖,在邊長為8的菱形中,,將沿折起,使點(diǎn)到達(dá)的位置,且二面角.

(1)求異面直線所成角的大。

(2)若點(diǎn)中點(diǎn),求直線與平面所成角的正弦值.

【答案】(1)見解析(2)

【解析】

1)連接AC,交BD于點(diǎn)O,連接OA1,證明BDA1C即可求解;(2)由(1)可知,∠A1OC即為二面角A1-BD-C的平面角,得∠A1OC60°.以O為坐標(biāo)原點(diǎn),,xy軸正方向,建立空間直角坐標(biāo)系O-xyz,求平面的法向量,再由線面角的向量公式求解即可

1)連接AC,交BD于點(diǎn)O,連接OA1

因?yàn)樗倪呅?/span>ABCD為菱形,

所以ACBD

從而OA1BD,OCBD

又因?yàn)?/span>OA1∩OCO,

所以BD⊥平面A1OC

因?yàn)?/span>A1C平面A1OC,

所以BDA1C

所以異面直線A1CBD所成角的大小為90°

2)由(1)可知,∠A1OC即為二面角A1-BD-C的平面角,所以∠A1OC60°

O為坐標(biāo)原點(diǎn),,x,y軸正方向,建立空間直角坐標(biāo)系O-xyz,則

B(40,0),D(40,0),C(04,0)A1(0,26),E(0,3,3)

所以(4,3,3),(4,2,6)(4,40)

設(shè)平面A1DC的法向量為(xy,z),

x3,則(3,-,-1),設(shè)直線BE與平面A1DC所成角為

sin,

所以直線BE與平面A1DC所成角的正弦值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:關(guān)于x的方程xa在(1+∞)上有實(shí)根;命題q:方程1表示的曲線是焦點(diǎn)在x軸上的橢圓.

1)若p是真命題,求a的取值范圍;

2)若pq是真命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】箱子里有16張撲克牌:紅桃、4,黑桃、8、7、4、3、2,草花、、6、5、4,方塊、5,老師從這16張牌中挑出一張牌來,并把這張牌的點(diǎn)數(shù)告訴了學(xué)生甲,把這張牌的花色告訴了學(xué)生乙,這時,老師問學(xué)生甲和學(xué)生乙:你們能從已知的點(diǎn)數(shù)或花色中推知這張牌是什么牌嗎?于是,老師聽到了如下的對話:學(xué)生甲:我不知道這張牌;學(xué)生乙:我知道你不知道這張牌;學(xué)生甲:現(xiàn)在我知道這張牌了;學(xué)生乙:我也知道了.則這張牌是( )

A. 草花5B. 紅桃

C. 紅桃4D. 方塊5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)、是雙曲線 的兩個焦點(diǎn),上一點(diǎn),若,是△的最小內(nèi)角,且,則雙曲線的漸近線方程是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若數(shù)列滿足 (N*),則稱為數(shù)列的“偏差數(shù)列”.

(1)若為常數(shù)列,且為的“偏差數(shù)列”,試判斷是否一定為等差數(shù)列,并說明理由;

(2)若無窮數(shù)列是各項均為正整數(shù)的等比數(shù)列,且,為數(shù)列的“偏差數(shù)列”,求的值;

(3)設(shè),為數(shù)列的“偏差數(shù)列”,,若對任意恒成立,求實(shí)數(shù)M的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

(1)若上單調(diào)遞增,求的取值范圍;

(2)若有兩個極值點(diǎn),,,證明:(i);(ii).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地因受天氣,春季禁漁等因素影響,政府規(guī)定每年的7月1日以后的100天為當(dāng)年的捕魚期.某漁業(yè)捕撈隊對噸位為的20艘捕魚船一天的捕魚量進(jìn)行了統(tǒng)計,如下表所示:

捕魚量(單位:噸)

頻數(shù)

2

7

7

3

1

根據(jù)氣象局統(tǒng)計近20年此地每年100天的捕魚期內(nèi)的晴好天氣情況如下表(捕魚期內(nèi)的每個晴好天氣漁船方可捕魚,非晴好天氣不捕魚):

晴好天氣(單位:天)

頻數(shù)

2

7

6

3

2

(同組數(shù)據(jù)以這組數(shù)據(jù)的中間值作代表)

(Ⅰ)估計漁業(yè)捕撈隊噸位為的漁船一天的捕魚量的平均數(shù);

(Ⅱ)若以(Ⅰ)中確定的平均數(shù)作為上述噸位的捕魚船在晴好天氣捕魚時一天的捕魚量.

①估計一艘上述噸位的捕魚船一年在捕魚期內(nèi)的捕魚總量;

②已知當(dāng)?shù)佤~價為2萬元/噸,此種捕魚船在捕魚期內(nèi)捕魚時,每天成本為10萬元/艘;若不捕魚,每天成本為2萬元/艘,請依據(jù)往年天氣統(tǒng)計數(shù)據(jù),估計一艘此種捕魚船年利潤不少于1600萬元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,為橢圓的左、右焦點(diǎn),過右焦點(diǎn)的直線與橢圓交于兩點(diǎn),且的周長為.

(Ⅰ)求橢圓的方程;

(Ⅱ)若點(diǎn)A是第一象限內(nèi)橢圓上一點(diǎn),且在軸上的正投影為右焦點(diǎn),過點(diǎn)作直線分別交橢圓于兩點(diǎn),當(dāng)直線的傾斜角互補(bǔ)時,試問:直線的斜率是否為定值;若是,請求出其定值;否則,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】矩形中, , ,點(diǎn)中點(diǎn),沿折起至,如下圖所示,點(diǎn)在面的射影落在上.

(Ⅰ)求證:

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案