(12分)已知數(shù)列

    1.當(dāng)為何值時(shí),數(shù)列可以構(gòu)成公差不為零的等差數(shù)列,并求其通項(xiàng)公式

   2.若求數(shù)列的前n項(xiàng)和

 

解析:I.

    

Ⅱ.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•綿陽(yáng)三模)已知數(shù)列{an}各項(xiàng)均為正數(shù),Sn為其前n項(xiàng)和,對(duì)于n∈N*,總有an,Sn,
a
2
n
成等差數(shù)列.
(I)求數(shù)列{an}的通項(xiàng)an;
(II)設(shè)數(shù)列{
1
an
}的前n項(xiàng)和為Tn,數(shù)列{Tn}的前n項(xiàng)和為Rn,求證:當(dāng)n≥2,n∈N*時(shí),Rn-1=n(Tn-1);
(III)對(duì)任意n≥2,n∈N*,試比較
1
n
+
1
n+1
+
n
i=1
a
-3
i
與2+
1
2
的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}各項(xiàng)均為正數(shù),觀察下面的程序框圖
(1)若d≠0,分別寫出當(dāng)k=2,k=3時(shí)s的表達(dá)式.
(2)當(dāng)輸入a1=d=2,k=100 時(shí),求s的值( 其中2的高次方不用算出).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列的首項(xiàng)為a1=2,前n項(xiàng)和為Sn,且對(duì)任意的n∈N*,當(dāng)n≥2時(shí),an總是3Sn-4與2-
5
2
Sn-1
的等差中項(xiàng).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=(n+1)an,Tn是數(shù)列{bn}的前n項(xiàng)和,n∈N*,求Tn;
(Ⅲ)設(shè)cn=
3an
4•2n-3n-1an
,Pn是數(shù)列{cn}的前項(xiàng)和,n∈N*,試證明:Pn
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣東省六校高三5月高考模擬考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知數(shù)列的前項(xiàng)和為,若,,

(1)求數(shù)列的通項(xiàng)公式:

(2)令,

①當(dāng)為何正整數(shù)值時(shí),;

②若對(duì)一切正整數(shù),總有,求的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案