3.定義在(0,+∞)的函數(shù)f(x)滿足9f(x)<xf'(x)<10f(x)且f(x)>0,則$\frac{f(2)}{f(1)}$的取值范圍是(29,210).

分析 根據(jù)條件分別構造函數(shù)g(x)=$\frac{f(x)}{{x}^{9}}$和h(x)=$\frac{f(x)}{{x}^{10}}$,分別求函數(shù)的導數(shù),研究函數(shù)的單調性進行求解即可.

解答 解:設g(x)=$\frac{f(x)}{{x}^{9}}$,
∴g′(x)=$\frac{f′(x){x}^{9}-f(x)9{x}^{8}}{({x}^{9})^{2}}$=$\frac{xf′(x)-9f(x)}{{x}^{10}}$,
∵9f(x)<xf'(x),
∴g′(x)=$\frac{xf′(x)-9f(x)}{{x}^{10}}$>0,
即g(x)在(0,+∞)上是增函數(shù),
則g(2)>g(1),
即$\frac{f(2)}{{2}^{9}}$>$\frac{f(1)}{{1}^{9}}$,則$\frac{f(2)}{f(1)}$>29,
同理設h(x)=$\frac{f(x)}{{x}^{10}}$,
∴h′(x)=$\frac{f′(x){x}^{10}-f(x)•10{x}^{9}}{({x}^{10})^{2}}$=$\frac{xf′(x)-10f(x)}{{x}^{11}}$,
∵xf'(x)<10f(x),
∴h′(x)=$\frac{xf′(x)-10f(x)}{{x}^{11}}$<0,
即h(x)在(0,+∞)上是減函數(shù),
則h(2)<h(1),
即$\frac{f(2)}{{2}^{10}}$<$\frac{f(1)}{{1}^{10}}$,則$\frac{f(2)}{f(1)}$<210
綜上29<$\frac{f(2)}{f(1)}$<210,
故答案為:(29,210

點評 本題主要考查函數(shù)取值范圍的求解,根據(jù)條件分別構造兩個函數(shù),利用函數(shù)單調性和導數(shù)之間的關系進行轉化是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

13.等差數(shù)列{an}的前n項和為Sn,已知(a1007-1)3+2 015(a1007-1)=1,(a1009-1)3+2 015(a1009-1)=-1,則( 。
A.S2015=2 015,a1009>1>a1007B.S2015=2 015,a1007>1>a1009
C.S2015=-2 015,a1009>1>a1007D.S2015=-2 015,a1007>1>a1009

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.在四棱錐P-ABCD中,底面ABCD是一直角梯形,BA⊥AD,AD∥BC,AB=BC=2,PA=3,AD=6,PA⊥底面ABCD,E是PD上的動點.若CE∥平面PAB,則三棱錐C-ABE的體積為( 。
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{2}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知約束條件$\left\{\begin{array}{l}{x+y-3≥0}\\{x-2y+3≥0}\\{x≤a}\end{array}\right.$,表示的可行域為D,其中a>1,點(x0,y0)∈D,點(m,n)∈D.若3x0-y0與$\frac{n+1}{m}$的最小值相等,則實數(shù)a等于( 。
A.$\frac{5}{4}$B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知x,y滿足約束條件$\left\{\begin{array}{l}{x-2≥0}\\{x+y≤6}\\{2x-y≤6}\end{array}\right.$,若目標函數(shù)z=3x+y+a的最大值是10,則a=( 。
A.6B.-4C.1D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知m為實數(shù),函數(shù)f(x)=$\frac{2m}{3}$x3+x2-3x-mx+2,g(x)=f′(x),f′(x)是f(x)的導函數(shù).
(1)當m=1時,求f(x)的單調區(qū)間;
(2)若g(x)在區(qū)間[-1,1]上有零點,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5. 如圖,三棱錐A-BCD中,DC⊥BD,BC=2$\sqrt{3}$,CD=AC=2,AB=AD=2$\sqrt{2}$.
(Ⅰ)證明:AB⊥CD;
(Ⅱ)求直線AC與平面ABD所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.快遞員通知小張中午12點到小區(qū)門口取快遞,由于工作原因,快遞員于11:50到12:10之間隨機到達小區(qū)門口,并停留等待10分鐘,若小張于12:00到12:10之間隨機到達小區(qū)門口,也停留等待10分鐘,則小張能取到快遞的概率為( 。
A.$\frac{1}{2}$B.$\frac{7}{12}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.若p是真命題,q是假命題,則( 。
A.p∧q是真命題B.p∨q是假命題C.¬p是真命題D.¬q是真命題

查看答案和解析>>

同步練習冊答案