【題目】某中學(xué)有學(xué)生500人,學(xué)校為了解學(xué)生課外閱讀時間,從中隨機抽取了50名學(xué)生,收集了他們201810月課外閱讀時間(單位:小時)的數(shù)據(jù),并將數(shù)據(jù)進(jìn)行整理,分為5組:[1012),[1214),[14,16),[16,18),[1820],得到如圖所示的頻率分布直方圖.

(Ⅰ)試估計該校所有學(xué)生中,201810月課外閱讀時間不小于16小時的學(xué)生人數(shù);

(Ⅱ)已知這50名學(xué)生中恰有2名女生的課外閱讀時間在[18,20],現(xiàn)從課外閱讀時間在[18,20]的樣本對應(yīng)的學(xué)生中隨機抽取2人,求至少抽到1名女生的概率;

(Ⅲ)假設(shè)同組中的每個數(shù)據(jù)用該組區(qū)間的中點值代替,試估計該校學(xué)生201810月課外閱讀時間的平均數(shù).

【答案】(Ⅰ)150(Ⅱ)(Ⅲ)14.68

【解析】

(Ⅰ)由頻率分布直方圖求出課外閱讀時間不小于16小時的樣本的頻率為0.30,由此能估計該校所有學(xué)生中,201810月課外閱讀時間不小于16小時的學(xué)生人數(shù);(Ⅱ)閱讀時間在[1820]的樣本的頻率為0.10.從而課外閱讀時間在[18,20]的樣本對應(yīng)的學(xué)生人數(shù)為5.這5名學(xué)生中有2名女生,3名男生,設(shè)女生為A,B,男生為CD,E,從中抽取2人,利用列舉法能求出至少抽到1名女生的概率;(Ⅲ)由頻率分布直方圖能估計該校學(xué)生201810月課外閱讀時間的平均數(shù).

(Ⅰ)0.10×2+0.05×2=0.30,

即課外閱讀時間不小于16小時的樣本的頻率為0.30

因為500×0.30=150,

所以估計該校所有學(xué)生中,201810月課外閱讀時間不小于16小時的學(xué)生人數(shù)為150.

(Ⅱ)閱讀時間在[18,20]的樣本的頻率為0.05×2=0.10.

因為50×0.10=5,即課外閱讀時間在[18,20]的樣本對應(yīng)的學(xué)生人數(shù)為5

5名學(xué)生中有2名女生,3名男生,設(shè)女生為A,B,男生為C,DE,

從中抽取2人的所有可能結(jié)果是:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(BE),(C,D),(C,E),(D,E).

其中至少抽到1名女生的結(jié)果有7個,

所以從課外閱讀時間在[18,20]的樣本對應(yīng)的學(xué)生中隨機抽取2人,至少抽到1名女生的概率為p=

(Ⅲ)根據(jù)題意,0.08×2×11+0.12×2×13+0.15×2×15+0.10×2×17+0.05×2×19=14.68(小時).

由此估計該校學(xué)生201810月課外閱讀時間的平均數(shù)為14.68小時.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐ABCD中,BCD是邊長為的等邊三角形,,二面角ABCD的大小為θ,且,則三棱錐ABCD體積的最大值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】Sn為等比數(shù)列的前n項和,已知S2=2,S3=-6.

(1)求的通項公式;

(2)求Sn,并判斷Sn+1,SnSn+2是否成等差數(shù)列。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】這次新冠肺炎疫情,是新中國成立以來在我國發(fā)生的傳播速度最快、感染范圍最廣、防控難度最大的一次重大突發(fā)公共衛(wèi)生事件.中華民族歷史上經(jīng)歷過很多磨難,但從來沒有被壓垮過,而是愈挫愈勇,不斷在磨難中成長,從磨難中奮起.在這次疫情中,全國人民展現(xiàn)出既有責(zé)任擔(dān)當(dāng)之勇、又有科學(xué)防控之智.某校高三學(xué)生也展開了對這次疫情的研究,一名同學(xué)在數(shù)據(jù)統(tǒng)計中發(fā)現(xiàn),從202021日至27日期間,日期和全國累計報告確診病例數(shù)量(單位:萬人)之間的關(guān)系如下表:

日期

1

2

3

4

5

6

7

全國累計報告確診病例數(shù)量(萬人)

1.4

1.7

2.0

2.4

2.8

3.1

3.5

1)根據(jù)表中的數(shù)據(jù),運用相關(guān)系數(shù)進(jìn)行分析說明,是否可以用線性回歸模型擬合的關(guān)系?

2)求出關(guān)于的線性回歸方程(系數(shù)精確到0.01.并預(yù)測210日全國累計報告確診病例數(shù).

參考數(shù)據(jù):,,.

參考公式:相關(guān)系數(shù)

回歸方程中斜率和截距的最小二乘估計公式分別為:

,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱柱的底面為菱形, , , 中點.

(1)求證: 平面;

(2)若底面,且直線與平面所成線面角的正弦值為,求的長.

【答案】(1)證明見解析;(2)2.

【解析】試題分析:(1設(shè)的中點,根據(jù)平幾知識可得四邊形是平行四邊形,即得,再根據(jù)線面平行判定定理得結(jié)論,2根據(jù)條件建立空間直角坐標(biāo)系,設(shè)立各點坐標(biāo),利用方程組解得平面一個法向量,根據(jù)向量數(shù)量積求向量夾角,再根據(jù)線面角與向量夾角互余關(guān)系列等式,解得的長.

試題解析:(1)證明:設(shè)的中點,連

因為,又,所以

所以四邊形是平行四邊形,

所以

平面, 平面

所以平面.

(2)因為是菱形,且,

所以是等邊三角形

中點,則,

因為平面

所以,

建立如圖的空間直角坐標(biāo)系,令,

, , ,

, ,

設(shè)平面的一個法向量為,

,

,設(shè)直線與平面所成角為,

解得,故線段的長為2.

型】解答
結(jié)束】
20

【題目】橢圓:的左、右焦點分別為、,若橢圓過點.

(1)求橢圓的方程;

(2)若為橢圓的左、右頂點, )為橢圓上一動點,設(shè)直線分別交直線 于點,判斷線段為直徑的圓是否經(jīng)過定點,若是,求出該定點坐標(biāo);若不恒過定點,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,選項正確的是(

A. 在回歸直線中,變量時,變量的值一定是15

B. 兩個變量相關(guān)性越強,則相關(guān)系數(shù)就越接近于1

C. 在殘差圖中,殘差點比較均勻落在水平的帶狀區(qū)域中即可說明選用的模型比較合適,與帶狀區(qū)域的寬度無關(guān)

D. 若某商品的銷售量(件)與銷售價格(元/件)存在線性回歸方程為,當(dāng)銷售價格為10元時,銷售量為100件左右

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的一個焦點為,點在橢圓

(Ⅰ)求橢圓的方程與離心率;

(Ⅱ)設(shè)橢圓上不與點重合的兩點, 關(guān)于原點對稱,直線, 分別交軸于, 兩點求證:以為直徑的圓被軸截得的弦長是定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形為菱形, , 平面, , 中點.

(1)求證: ∥平面;

(2)求證: ;

(3)若為線段上的點,當(dāng)三棱錐的體積為時,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,離心率,點在橢圓上.

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)設(shè)點P是橢圓C上一點,左頂點為A,上頂點為B,直線PA與y軸交于點M,直線PB與x軸交于點N,求證: 為定值.

查看答案和解析>>

同步練習(xí)冊答案