1.已知數(shù)列{an}滿足a1=1,且對(duì)任意的正整數(shù)n,有an+1=2an成立,則a3a5=(  )
A.$\frac{1}{64}$B.32C.64D.$\frac{1}{32}$

分析 由題意可得數(shù)列{an}是首項(xiàng)為1,公比q為2的等比數(shù)列,運(yùn)用等比數(shù)列的通項(xiàng)公式,計(jì)算即可得到所求積.

解答 解:數(shù)列{an}滿足a1=1,且對(duì)任意的正整數(shù)n,有an+1=2an成立,
可得數(shù)列{an}是首項(xiàng)為1,公比q為2的等比數(shù)列,
則a3a5=a1q2•a1q4=4×16=64,
故選:C.

點(diǎn)評(píng) 本題考查等比數(shù)列的定義和通項(xiàng)公式的運(yùn)用,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.解不等式:(1)$\frac{3x-2}{2x}≥1$;(2)$\frac{{x}^{2}-x-2}{{x}^{2}+5x+6}<0$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,Sn+1=Sn+2an,則a10=( 。
A.511B.512C.1023D.1024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知(2x-1)+i=y-(2-y)i(x,y∈R,i是虛數(shù)單位),若復(fù)數(shù)z=x+yi,則|z|=$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=sin2$\frac{ωx}{2}$+$\frac{1}{2}$sinωx-$\frac{1}{2}$(ω>0),x∈R.若f(x)在區(qū)間(π,2π)內(nèi)沒有零點(diǎn),則ω的取值范圍是( 。
A.(0,$\frac{1}{8}$]B.(0,$\frac{1}{4}$]∪[$\frac{5}{8}$,1)C.(0,$\frac{5}{8}$]D.(0,$\frac{1}{8}$]∪($\frac{1}{4}$,$\frac{5}{8}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=(x2-2x)ex,關(guān)于f(x)的性質(zhì),有以下四個(gè)推斷:
①f(x)的定義域是(-∞,+∞);
②函數(shù)f(x)是區(qū)間(0,2)上的增函數(shù);
③f(x)是奇函數(shù);
④函數(shù)f(x)在x=2處取得最小值.
其中推斷正確的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=|x-a|.
(Ⅰ)當(dāng)a=2,解不等式f(x)≥4-|x-1|;
(Ⅱ)若f(x)≤1的解集為[0,2],$\frac{1}{m}$+$\frac{1}{2n}$=a(m>0,n>0),求證:m+2n≥4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=$\sqrt{\frac{2-x}{3+x}}$+ln(3x$-\frac{1}{3}$)的定義域?yàn)镸.
(1)求M;
(2)當(dāng)x∈M時(shí),求g(x)=4${\;}^{x+\frac{1}{2}}$-2x+2+1的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某校運(yùn)動(dòng)會(huì),高二理三個(gè)班級(jí)的3名同學(xué)報(bào)名參加鉛球、跳高、三級(jí)跳遠(yuǎn)3個(gè)運(yùn)動(dòng)項(xiàng)目,每名同學(xué)都可以從3個(gè)運(yùn)動(dòng)項(xiàng)目中隨機(jī)選擇一個(gè),且每個(gè)人的選擇互相獨(dú)立.
(Ⅰ)求3名同學(xué)恰好選擇了2個(gè)不同運(yùn)動(dòng)項(xiàng)目的概率;
(Ⅱ)設(shè)選擇跳高的人數(shù)為ξ,試求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案