(本題滿(mǎn)分12分)已知函數(shù).
(Ⅰ)若的解集是,求實(shí)數(shù)的值;
(Ⅱ)若為整數(shù),,且函數(shù)在上恰有一個(gè)零點(diǎn),求的值.
(Ⅰ).
(Ⅱ)=-1
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿(mǎn)分12分)若實(shí)數(shù)、、滿(mǎn)足,則稱(chēng)比接近.
(1)若比3接近0,求的取值范圍;
(2)對(duì)任意兩個(gè)不相等的正數(shù)、,證明:比接近;
(3)已知函數(shù)的定義域.任取,等于和中接近0的那個(gè)值.寫(xiě)出函數(shù)的解析式,并指出它的奇偶性、最值和單調(diào)性(結(jié)論不要求證明).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿(mǎn)分12分)
已知定義域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/33/0/1ipuw3.gif" style="vertical-align:middle;" />的函數(shù)同時(shí)滿(mǎn)足以下三個(gè)條件:
①對(duì)任意的,總有;②;③若且,則有成立,則稱(chēng)為“友誼函數(shù)”.
(Ⅰ)若已知為“友誼函數(shù)”,求的值;
(Ⅱ)函數(shù)在區(qū)間上是否為“友誼函數(shù)”?并給出理由;
(Ⅲ)已知為“友誼函數(shù)”,且 ,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)的定義域?yàn)椋?,+∞),且對(duì)任意正實(shí)數(shù)x,y都有f(x·y)=f(x)+f(y)恒成立,已知f(2)=1且x>1時(shí)f(x)>0.
(1)求;
(2)判斷y=f(x)在(0,+ ∞)上的單調(diào)性;
(3)一個(gè)各項(xiàng)均為正數(shù)的數(shù)列其中sn是數(shù)列的前n項(xiàng)和,求
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知一元二次方程的一個(gè)根在-2與-1之間,另一個(gè)根在1與2之間,試求點(diǎn)的軌跡及的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)設(shè)是定義在R上的奇函數(shù),且對(duì)任意實(shí)數(shù)x,恒有,當(dāng)時(shí),。
(1)求證:是周期函數(shù);
(2)計(jì)算:。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com