已知函數(shù)f(x)=x2+ax-lnx-1
(1)當(dāng)a=3時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)函數(shù)f(x)在(2,4)上是減函數(shù),求實(shí)數(shù)a的取值范圍.
分析:(1)先求導(dǎo),令導(dǎo)數(shù)等于0,得出其極值點(diǎn),列出其表格,進(jìn)而得出其單調(diào)區(qū)間;
(2)函數(shù)f(x)在(2,4)上是減函數(shù)?f(x)在區(qū)間(2,4)恒成立,通過(guò)分離參數(shù),再利用導(dǎo)數(shù)求出其最值即可.
解答:解:(1)∵函數(shù)f(x)=x2+ax-lnx-1,其定義域?yàn)椋?,+∞).
f′(x)=-2x+a-
1
x
,當(dāng)a=3時(shí),f′(x)=-2x+3-
1
x
=-
2x2-3x+1
x
;
令f(x)=0,解得x=
1
2
或1

如下表:
由表格可知:在區(qū)間(0,
1
2
),(1,+∞)上f′(x)<0,函數(shù)f(x)為減函數(shù);
在區(qū)間(
1
2
,1)上f′(x)>0.函數(shù)f(x)為增函數(shù).
(2)∵函數(shù)f(x)在(2,4)上是減函數(shù),則f′(x)=-2x+a-
1
x
≤0
,在x∈(2,4)上恒成立.
-2x+a-
1
x
≤0?2x+
1
x
≥a在x∈(2,4)上恒成立

令g(x)=2x+
1
x
,則g(x)=2-
1
x2
=
2x2-1
x2
≥0,在(2,4)上恒成立,
∴g(x)在(2,4)上單調(diào)遞增,∴g(x)>g(2)=2×2+
1
2
=
9
2

因此實(shí)數(shù)a的取值范圍a∈(-∞,
9
2
]
點(diǎn)評(píng):熟練掌握利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值、最值是解題的關(guān)鍵.分離參數(shù)法、等價(jià)轉(zhuǎn)化法必須掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案