到定點(diǎn)(2,0)的距離與到定直線x=8的距離之比為
2
2
的動(dòng)點(diǎn)的軌跡方程是(  )
分析:設(shè)動(dòng)點(diǎn)的坐標(biāo)為(x,y),利用動(dòng)點(diǎn)P到定點(diǎn)(2,0)的距離與到定直線x=8的距離之比為
2
2
可得方程,化簡(jiǎn),由此能求出軌跡的方程.
解答:解:由題意,設(shè)P(x,y),則
(x-2)2+y2
|x-8|
=
2
2

化簡(jiǎn)得軌跡方程是x2+2y2+8x-56=0.
故選C.
點(diǎn)評(píng):本題主要考查軌跡方程的求法,屬于基礎(chǔ)題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題:①過(guò)點(diǎn)P(2,1)在兩坐標(biāo)軸上的截距互為相反數(shù)的直線方程是x-y=1;②過(guò)點(diǎn)P(2,1)作圓x2+y2=4的切線,則切線方程是3x+4y-10=0;③動(dòng)點(diǎn)P到定點(diǎn)(1,2)的距離與到定直線x-y+1=0的距離相等點(diǎn)的軌跡是一條拋物線;④若不等式|x-2|+|x-a|≥a在R上恒成立,則a的最大值為1,其中,正確命題的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知?jiǎng)狱c(diǎn)P到直線l:x=--
4
3
3
的距離d1,是到定點(diǎn)F(-
3
,0
)的距離d2
2
3
3
倍.
(1) 求動(dòng)點(diǎn)P的軌跡方程;
(2) 若直線m:y=k(x+1)(k≠o)與點(diǎn)P的軌跡有兩個(gè)交點(diǎn)A、B,求弦AB的中垂線n在y軸上的截距y0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆河南靈寶第三高級(jí)中學(xué)高二上學(xué)期第三次質(zhì)量檢測(cè)理數(shù)學(xué)(解析版) 題型:選擇題

設(shè)定點(diǎn)M(3,)與拋物線=2x上的點(diǎn)P的距離為,P到拋物線準(zhǔn)線l的距為,則取最小值時(shí),P點(diǎn)的坐標(biāo)為

A.(0,0)          B.(1,)        C.(2,2)          D.(,-

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知?jiǎng)狱c(diǎn)P到直線l:x=--
4
3
3
的距離d1,是到定點(diǎn)F(-
3
,0
)的距離d2
2
3
3
倍.
(1) 求動(dòng)點(diǎn)P的軌跡方程;
(2) 若直線m:y=k(x+1)(k≠o)與點(diǎn)P的軌跡有兩個(gè)交點(diǎn)A、B,求弦AB的中垂線n在y軸上的截距y0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年湖北省宜昌一中、枝江一中、當(dāng)陽(yáng)一中三校聯(lián)考高二(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

命題:①過(guò)點(diǎn)P(2,1)在兩坐標(biāo)軸上的截距互為相反數(shù)的直線方程是x-y=1;②過(guò)點(diǎn)P(2,1)作圓x2+y2=4的切線,則切線方程是3x+4y-10=0;③動(dòng)點(diǎn)P到定點(diǎn)(1,2)的距離與到定直線x-y+1=0的距離相等點(diǎn)的軌跡是一條拋物線;④若不等式|x-2|+|x-a|≥a在R上恒成立,則a的最大值為1,其中,正確命題的序號(hào)是   

查看答案和解析>>

同步練習(xí)冊(cè)答案