(本題滿分14分)
已知數(shù)列滿足,數(shù)列滿足.
(1)求證:數(shù)列是等差數(shù)列;
(2)設,求滿足不等式的所有正整數(shù)的值.
(1)證明:由,計算中,得,
即得。(2)滿足不等式的所有正整數(shù)的值為2,3,4。

試題分析:(1)證明:由,則。
代入中,得,
即得。所以數(shù)列是等差數(shù)列!6分
(2)解:因為數(shù)列是首項為,公差為等差數(shù)列,
,則!8分
從而有
!11分
,由,得。
,得。
故滿足不等式的所有正整數(shù)的值為2,3,4!14分
點評:中檔題,本題綜合考查等差數(shù)列、等比數(shù)列的基礎知識,本解答從確定通項公式入手,明確了所研究數(shù)列的特征!肮椒ā鼻髷(shù)列的前n項和是高考常?嫉綌(shù)列求和方法。不等式的證明應用了“放縮法”。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

是等差數(shù)列,首項公差,,且,則使數(shù)列的前n項和成立的最大自然數(shù)n是                           (   )
A.4027B.4026C.4025D.4024

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知三個正整數(shù)按某種順序排列成等差數(shù)列。
(1)求的值;
(2)若等差數(shù)列的首項、公差都為,等比數(shù)列的首項、公比也都為,前項和分別為,且,求滿足條件的正整數(shù)的最大值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

等差數(shù)列中,若,則該數(shù)列前2013項的和為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題12分) 正項數(shù)列{an}滿足a1=2,點An)在雙曲線y2-x2=1上,點()在直線y=-x+1上,其中Tn是數(shù)列{bn}的前n項和。
①求數(shù)列{an}、{bn}的通項公式;
②設Cn=anbn,證明 Cn+1<Cn
③若m-7anbn>0恒成立,求正整數(shù)m的最小值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知成等差數(shù)列,成等比數(shù)列 ,則等于(   )
A.30B.-30C.±30D.15

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知等差數(shù)列{an}的前n項和是,則使成立的最小正整數(shù)為(     )
A.2009B.2010C.2011D.2012

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知數(shù)列的前項和,則                     

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖都是由邊長為1的正方體疊成的幾何體,例如第(1)個幾何體的表面積為6個平方單位,第(2)個幾何體的表面積為18個平方單位,第(3)個幾何體的表面積是36個平方單位.依此規(guī)律,則第個幾何體的表面積是__________個平方單位.

查看答案和解析>>

同步練習冊答案