已知函數(shù)
(1)討論的單調(diào)性;
(2)設(shè),證明:當(dāng)時(shí),;
(3)若函數(shù)的圖像與x軸交于A,B兩點(diǎn),線段AB中點(diǎn)的橫坐標(biāo)為x0,證明:(x0)<0.(本題滿分14分)

(1)若單調(diào)增加.
,單調(diào)增加,在單調(diào)減少. 
(2)見(jiàn)解析。

解析試題分析:解:(1)…………………………………………1分
 …………………………2分
(i)若單調(diào)增加.…………………3分
(ii)若
且當(dāng)
所以單調(diào)增加,在單調(diào)減少. ……………………5分
(2)設(shè)函數(shù)

…………………………………7分
當(dāng)時(shí),,所以單調(diào)遞增,
故當(dāng),  ……………………………9分
(3)由(I)可得,當(dāng)的圖像與x軸至多有一個(gè)交點(diǎn),
,從而的最大值為
不妨設(shè)
由(II)得
從而
由(I)知,  …………………………………………………14分
考點(diǎn):本題考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)性、綜合分析和解決問(wèn)題的能力以及分類討論的思想方法。
點(diǎn)評(píng):解答本題易出現(xiàn)以下失誤:①忘記求函數(shù)的定義域;②想不到分類討論,從而在判斷函數(shù)的單調(diào)性時(shí)出現(xiàn)錯(cuò)誤。當(dāng)求函數(shù)的單調(diào)性時(shí),如果無(wú)法判斷導(dǎo)函數(shù)的符號(hào),自然而然的就應(yīng)該想到分類討論,為了避免錯(cuò)誤的發(fā)生,在平常做題時(shí)就要養(yǎng)成分析思路的習(xí)慣。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)設(shè)為實(shí)數(shù),函數(shù),.
(1)求的單調(diào)區(qū)間與極值;
(2)求證:當(dāng)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)
一列火車在平直的鐵軌上行駛,由于遇到緊急情況,火車以速度(單位:m/s)緊急剎車至停止。求:
(I)從開(kāi)始緊急剎車到火車完全停止所經(jīng)過(guò)的時(shí)間;
(Ⅱ)緊急剎車后火車運(yùn)行的路程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)曲線C:,過(guò)點(diǎn)的切線方程為,且交于曲線兩點(diǎn),求切線與C圍成的圖形的面積。  

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)已知函數(shù)有極值,且曲線處的切線斜率為3.
(1)求函數(shù)的解析式;
(2)求上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

本題滿分15分)已知函數(shù),.
(Ⅰ)當(dāng)時(shí),求函數(shù)的極值點(diǎn);
(Ⅱ)若函數(shù)在導(dǎo)函數(shù)的單調(diào)區(qū)間上也是單調(diào)的,求的取值范圍;
(Ⅲ) 當(dāng)時(shí),設(shè),且是函數(shù)的極值點(diǎn),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題12分)
已知函有極值,且曲線處的切線斜率為3.
(1)求函數(shù)的解析式;
(2)求在[-4,1]上的最大值和最小值。
(3)函數(shù)有三個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)求的單調(diào)區(qū)間;
(2)設(shè),若對(duì)任意,均存在,使得,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分10分)
設(shè)函數(shù)為奇函數(shù),其圖象在點(diǎn)處的切線與直線垂直,導(dǎo)函數(shù)的最小值為.試求,的值。

查看答案和解析>>

同步練習(xí)冊(cè)答案