已知實(shí)數(shù)x,y滿足數(shù)學(xué)公式,則目標(biāo)函數(shù)數(shù)學(xué)公式的最大值是________.


分析:由題設(shè)條件知的幾何意義是點(diǎn)(x,y)與直線2x-y+1=0的距離,其最大值就是可行域內(nèi)點(diǎn)到直線2x-y+1=0的距離的最大值.
解答:解:由題設(shè),畫出可行域如圖,
,可得當(dāng)直線y=tx,最大值就是可行域內(nèi)點(diǎn)到直線2x-y+1=0的距離的最大值.
A(1,2)時(shí),點(diǎn)A到直線2x-y+1=0的距離的最大最大,最大值為:
故答案為:
點(diǎn)評(píng):本題主要考查了用平面區(qū)域二元一次不等式組,以及簡(jiǎn)單的轉(zhuǎn)化思想和數(shù)形結(jié)合的思想,本題考查問(wèn)題轉(zhuǎn)化的能力,轉(zhuǎn)化是數(shù)學(xué)解題的靈魂,合理的轉(zhuǎn)化不僅僅使問(wèn)題得到了解決,還可以使解決問(wèn)題的難度大大降低,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x,y滿足
x-y+2≥0
x+y≥0
x≤1
,則z=2x+y的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x、y滿足
x≥1
y≥2
x+y≤4
,則u=
x+y
x
的取值范圍是
[2,4]
[2,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x,y滿足
x+y≤2
x-y≤2
0≤x≤1
,則z=2x-3y的最大值是
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x,y滿足
y2-x≤0
x+y≤2
,則2x+y的最小值為
-
1
8
-
1
8
,最大值為
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•安徽模擬)已知實(shí)數(shù)x,y滿足|2x+y+1|≤|x+2y+2|,且|y|≤1,則z=2x+y的最大值為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案