已知奇函數(shù)f(x)=
b-2x
2x+1+a
定義域?yàn)镽,其中a,b為常數(shù).
(1)求a,b的值;
(2)若函數(shù)g(x)=log2(bx2-3x+m)(m∈R)的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍.
考點(diǎn):函數(shù)的定義域及其求法,對(duì)數(shù)函數(shù)的定義域
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由f(x)為奇函數(shù)得f(0)=0,f(-1)=-f(1),解出a,b,再檢驗(yàn)f(x)為奇函數(shù)即可;
(2)由(1)得g(x)=log2(x2-3x+m),又知其定義域?yàn)镽,只要求x2-3x+m>0,恒成立即可,即△<0即可.
解答: 解:(1)∵f(x)是R上的奇函數(shù),
f(0)=0
f(-1)=-f(1)

b-1
2+a
=0
b-2-1
1+a
=-
b-2
4+a

解得
a=2
b=1
,此時(shí)f(x)=
1-2x
2x+1+2
,經(jīng)檢驗(yàn)可得f(-x)=-f(x),
故a=2,b=1.
(2)由(1)得g(x)=log2(x2-3x+m)
∵函數(shù)g(x)=log2(x2-3x+m)的定義域?yàn)镽,
∴x2-3x+m>0,恒成立即可,
∴△=9-4m<0,
∴m>
9
4

故m取值范圍為(
9
4
,+∞).
點(diǎn)評(píng):本題考查函數(shù)的奇偶性的判斷和運(yùn)用,考查奇函數(shù)的性質(zhì),函數(shù)的恒成立的問題,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

為了得到函數(shù)y=2sin(2x+
π
6
)的圖象,只需把函數(shù)y=2sinx的圖象( 。
A、向左平移
π
6
個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?倍(縱坐標(biāo)不變)
B、向左平移
π
6
個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?span id="8i8cg8k" class="MathJye">
1
2
倍(縱坐標(biāo)不變)
C、各點(diǎn)的縱坐標(biāo)不變、橫坐標(biāo)變?yōu)樵瓉淼?倍,再把所得圖象向左平移
π
12
個(gè)單位長(zhǎng)度
D、各點(diǎn)的縱坐標(biāo)不變、橫坐標(biāo)變?yōu)樵瓉淼?span id="weqg82g" class="MathJye">
1
2
倍,再把所得圖象向左平移
π
6
個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
2
sin(2x+
π
3
)(x∈R),則該函數(shù)的最小正周期為
 
,最小值為
 
,單調(diào)遞減區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的內(nèi)角A、B、C所對(duì)的邊長(zhǎng)分別為a,b,c,且(2b-
3
c)cosA=
3
acosC.
(1)求角A的大。
(2)若a=1,cosB=
4
5
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用20米長(zhǎng)的籬笆一邊靠墻圍成矩形,問靠墻一邊的長(zhǎng)度為何值時(shí),場(chǎng)地的面積最大,最大面積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由曲線y=
x
與y=x3所圍成的封閉圖形的面積是( 。
A、
11
12
B、
5
12
C、
2
3
D、
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在數(shù)列{an}中,a1=-1,a2=2,an+1+an-1=2(an+1)(n≥2,n∈N+).
(1)求證:數(shù)列{an-an-1}是等差數(shù)列;
(2)若an≥100,求正整數(shù)n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理科)下列命題中,正確的命題序號(hào)為
 

①方程組
2x+y=0
x-y=3
的解集為{1,2},
②集合C={
6
3-x
∈z|x∈N*}
={-6,-3,-2,-1,3,6}
③f(x)=
x-3
+
2-x
是函數(shù)
④f(x)=ax2+bx+3a+b是偶函數(shù),定義域?yàn)閇a-1,2a]則f(0)=1
⑤集合A={1,2,3,4},B={3,4,5,6}滿足S⊆A且S∩B≠∅的集合S的個(gè)數(shù)為12個(gè)
⑥函數(shù)y=
2
x
在定義域內(nèi)是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知ABCD是平行四邊形,則下列等式中成立的是( 。
A、
AD
+
AB
=
BC
B、
AB
+
AC
=
CB
C、
AD
+
DC
=
AC
D、
AD
+
AB
=
BD

查看答案和解析>>

同步練習(xí)冊(cè)答案