9.若過點(1,2)總可以作兩條直線與圓x2+y2+kx+2y+k2-15=0相切,則實數(shù)k的取值范圍是( 。
A.k<-3或k>2B.-3<k<2C.k>2D.以上都不對

分析 把圓的方程化為標準方程后,根據(jù)構(gòu)成圓的條件得到等號右邊的式子大于0,列出關(guān)于k的不等式,求出不等式的解集,然后由過已知點總可以作圓的兩條切線,得到點在圓外,故把點的坐標代入圓的方程中得到一個關(guān)系式,讓其大于0列出關(guān)于k的不等式,求出不等式的解集,綜上,求出兩解集的并集即為實數(shù)k的取值范圍.

解答 解:把圓的方程化為標準方程得:(x+$\frac{1}{2}$k)2+(y+1)2=16-$\frac{3}{4}$k2,
所以16-$\frac{3}{4}$k2>0,解得:-$\frac{8}{3}\sqrt{3}$<k<$\frac{8}{3}\sqrt{3}$,
又點(1,2)應(yīng)在已知圓的外部,
把點代入圓方程得:1+4+k+4+k2-15>0,即(k-2)(k+3)>0,
解得:k>2或k<-3,
則實數(shù)k的取值范圍是(-$\frac{8}{3}\sqrt{3}$,-3)∪(2,$\frac{8}{3}\sqrt{3}$).
故選D.

點評 此題考查了點與圓的位置關(guān)系,二元二次方程為圓的條件及一元二次不等式的解法.理解過已知點總利用作圓的兩條切線,得到把點坐標代入圓方程其值大于0是解本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

19.在△ABC中,sinA+$\sqrt{3}$cosA=2.
(Ⅰ)求A的大。
(Ⅱ)若a=2; B=45°;求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)為R上的偶函數(shù).當x≤0時,f(x)=4-x-a•2-x(a>0)
(Ⅰ)求函數(shù)f(x)在(0,+∞)上的解析式;
(Ⅱ)求函數(shù)f(x)在(0,+∞)上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.在△ABC中,sinA:sinB:sinC=4:3:2,那么cosC的值為$\frac{7}{8}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知在△ABC中,∠ACB=90°,BC=6,AC=8,P是線段AB上的點,則P到AC,BC的距離的乘積的最大值為( 。
A.12B.8C.$8\sqrt{3}$D.36

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.給出下列四個命題:
①如果一條直線垂直于一個平面內(nèi)的無數(shù)條直線,那么這條直線與這個平面垂直;
②過空間一定點有且只有一條直線與已知平面垂直;
③如果平面外一條直線a與平面α內(nèi)一條直線b平行,那么a∥α;
④一個二面角的兩個半平面分別垂直于另一個二面角的兩個半平面,則這兩個二面角相等;
其中真命題的為( 。
A.①③B.②④C.②③D.③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知數(shù)列{an}滿足an=2an-1+2n-1(n∈N*,n≥2)且a1=5.
(1)求a2,a3的值;
(2)若數(shù)列$\{\frac{{{a_n}+λ}}{2^n}\}$為等差數(shù)列,請求出實數(shù)λ;
(3)求數(shù)列{an}的通項公式及前n項和為Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.設(shè)f(x)=x2+bx+c且f(0)=f(2),則(  )
A.f(-2)<f(0)<f($\frac{3}{2}$)B.f($\frac{3}{2}$)<f(0)<f(-2)C.f($\frac{3}{2}$)<f(-2)<f(0)D.f(0)<f($\frac{3}{2}$)<f(-2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.設(shè){an}為等差數(shù)列,公差d=-2,sn為其前n項和,若s10=s11,求a1的值.

查看答案和解析>>

同步練習冊答案