分析 (Ⅰ)根據偶函數(shù)的性質秒,即可求出答案,
(Ⅱ)令t=2x,則y=t2-at,t>1,根據二次函數(shù)的性質即可求出.
解答 解:當x>0時,-x<0,而f(x)為R上偶函數(shù)
∴f(x)=f(-x)=4x-a•2x,
∴當x>0,f(x)=4x-a•2x,
(Ⅱ)令t=2x,則y=t2-at,t>1
若0≤$\frac{a}{2}$≤1時,ymin=1-a;若$\frac{a}{2}$>1,ymin=($\frac{a}{2}$)2-a•$\frac{a}{2}$=-$\frac{{a}^{2}}{4}$
綜上f(x)min=$\left\{\begin{array}{l}{1-a,0<a≤2}\\{-\frac{{a}^{2}}{4},a>2}\end{array}\right.$
點評 本題考查了偶函數(shù)的性質和二次函數(shù)的性質,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3\sqrt{5}}{5}$ | B. | $\frac{3\sqrt{5}}{4}$ | C. | $\frac{\sqrt{5}}{5}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(4)<f(-1)<f($\frac{11}{2}$) | B. | f(-1)<f(4)<f($\frac{11}{2}$) | C. | f($\frac{11}{2}$)<f(4)<f(-1) | D. | f(-1)<f($\frac{11}{2}$)<f(4) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 95 | B. | 114 | C. | 133 | D. | 152 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | k<-3或k>2 | B. | -3<k<2 | C. | k>2 | D. | 以上都不對 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com