20.已知函數(shù)f(x)為R上的偶函數(shù).當x≤0時,f(x)=4-x-a•2-x(a>0)
(Ⅰ)求函數(shù)f(x)在(0,+∞)上的解析式;
(Ⅱ)求函數(shù)f(x)在(0,+∞)上的最小值.

分析 (Ⅰ)根據偶函數(shù)的性質秒,即可求出答案,
(Ⅱ)令t=2x,則y=t2-at,t>1,根據二次函數(shù)的性質即可求出.

解答 解:當x>0時,-x<0,而f(x)為R上偶函數(shù)
∴f(x)=f(-x)=4x-a•2x,
∴當x>0,f(x)=4x-a•2x,
(Ⅱ)令t=2x,則y=t2-at,t>1
若0≤$\frac{a}{2}$≤1時,ymin=1-a;若$\frac{a}{2}$>1,ymin=($\frac{a}{2}$)2-a•$\frac{a}{2}$=-$\frac{{a}^{2}}{4}$
綜上f(x)min=$\left\{\begin{array}{l}{1-a,0<a≤2}\\{-\frac{{a}^{2}}{4},a>2}\end{array}\right.$

點評 本題考查了偶函數(shù)的性質和二次函數(shù)的性質,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

10.雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線與直線x+2y+1=0垂直,F(xiàn)1,F(xiàn)2分別為C的左右焦點,A為雙曲線上一點,若|F1A|=3|F2A|,則cos∠AF2F1=( 。
A.$\frac{3\sqrt{5}}{5}$B.$\frac{3\sqrt{5}}{4}$C.$\frac{\sqrt{5}}{5}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.某工廠要制造A種電子裝置42臺,B種電子裝置55臺,為了給每臺裝置配上一個外殼,需要從甲乙兩種不同的鋼板上截。阎追N鋼板每張面積為2m2,可作A外殼3個B外殼5個;乙種鋼板每張面積為3m,可作A外殼和B外殼各6個.用這兩種鋼板各多少張,才能使總的用料面積最?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知x,y滿足$\left\{\begin{array}{l}{x-y≤0}\\{x+y-2≤0}\\{x≥a}\end{array}\right.$,且z=2x-y的最大值與最小值的比值為-2,則a的值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知定義在R上的函數(shù)f(x)在(-∞,2)內為減函數(shù),且f(x+2)為偶函數(shù),則 f(-1),f(4),f($\frac{11}{2}$)的大小為( 。
A.f(4)<f(-1)<f($\frac{11}{2}$)B.f(-1)<f(4)<f($\frac{11}{2}$)C.f($\frac{11}{2}$)<f(4)<f(-1)D.f(-1)<f($\frac{11}{2}$)<f(4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知等差數(shù)列{an}的前n項和為Sn,S8≤6,S11≥27,則S19的最小值是( 。
A.95B.114C.133D.152

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.函數(shù)f(x)=lnx+3x-9的零點位于(  )
A.(1,2)B.(2,3)C.(3,4)D.(4,5)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若過點(1,2)總可以作兩條直線與圓x2+y2+kx+2y+k2-15=0相切,則實數(shù)k的取值范圍是( 。
A.k<-3或k>2B.-3<k<2C.k>2D.以上都不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知集合A={x|x2-6x+8<0},B={x|(x-a)•(x-3a)<0}.
(1)若a=1,求A∩B;
(2)若A∩B=∅,求a的取值范圍.

查看答案和解析>>

同步練習冊答案