12.在△ABC中,角A,B,C的對邊分別為a,b,c,且A=$\frac{π}{6}$,B=$\frac{π}{12}$,a=3,則c的值3$\sqrt{2}$.

分析 利用三角形內角和公式求得C的值,再由條件利用正弦定理求得c的值.

解答 解:△ABC中,角A,B,C的對邊分別為a,b,c,且A=$\frac{π}{6}$,B=$\frac{π}{12}$,a=3,
∴C=π-A-B=$\frac{3π}{4}$,
再由正弦定理可得$\frac{a}{sinA}$=$\frac{c}{sinC}$,即 $\frac{3}{\frac{1}{2}}$=$\frac{c}{\frac{\sqrt{2}}{2}}$,則c=3$\sqrt{2}$,
故答案為:3$\sqrt{2}$.

點評 本題主要考查三角形內角和公式,正弦定理的應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

2.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,兩個焦點為F1(-2,0),F(xiàn)2(2,0),P是橢圓上的動點,且向量$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的最大值為2.
(1)求橢圓方程;
(2)過左焦點的直線l交橢圓C與M、N兩點,且滿足$\overrightarrow{OM}•\overrightarrow{ON}sinθ=\frac{{4\sqrt{6}}}{3}cosθ$$(θ≠\frac{π}{2})$,求直線l的方程(其中∠MON=θ,O為坐標原點).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.在△ABC中,設AB=6,BC=7,AC=4,O為△ABC的內心,若$\overrightarrow{AO}$=p$\overrightarrow{AB}$+q$\overrightarrow{AC}$,則$\frac{p}{q}$等于( 。
A.$\frac{2}{3}$B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.若數(shù)列{an}滿足${a_1}•{a_2}•{a_3}…{a_n}={n^2}+3n+2$,則a4=$\frac{3}{2}$,an=$\left\{\begin{array}{l}{6,n=1}\\{\frac{n+2}{n},n>1}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知直線過點A(-1,2),斜率為2,則此直線的一般式方程式為y-2x-4=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.函數(shù)f(x)=Asin(ωx-$\frac{π}{6}$)+1(A>0,ω>0)的最大值為3,其圖象相鄰兩條對稱軸之間的距離為$\frac{π}{2}$.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)y=f(x)的單調增區(qū)間;
(3)設α∈(0,$\frac{π}{2}$),則f($\frac{α}{2}$)=2,求α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.在平面直角坐標系xOy中,橢圓W:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2.O為坐標原點,橢圓過點M(0,1),離心率為$\frac{{\sqrt{3}}}{2}$,直線y=kx+m(m≠0)與橢圓交于A,C兩點,B為橢圓上一點.
(1)求橢圓標準方程.
(2)用反證法證明:當點B不是W的頂點時,四邊形OABC是不可能為菱形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.命題“設$\overrightarrow a,\overrightarrow b$是向量,若$\overrightarrow a=-\overrightarrow b$,則$|{\overrightarrow a}|=|{\overrightarrow b}|$”的逆命題、逆否命題分別是( 。
A.真命題、真命題B.假命題、真命題C.真命題、假命題D.假命題、假命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.若z=(1+i)2,則復數(shù)z的模為2.

查看答案和解析>>

同步練習冊答案