【題目】已知 ,且(1﹣2x)n=a0+a1x+a2x2+a3x3+…+anxn .
(Ⅰ)求n的值;
(Ⅱ)求a1+a2+a3+…+an的值.
【答案】解:(Ⅰ)根據(jù)題意,
由 得:n(n﹣1)(n﹣2)(n﹣3)(n﹣4)=56
即(n﹣5)(n﹣6)=90
解之得:n=15或n=﹣4(舍去).
∴n=15.
(Ⅱ)當n=15時,由已知有(1﹣2x)15=a0+a1x+a2x2+a3x3+…+a15x15,
令x=1得:a0+a1+a2+a3+…+a15=﹣1,
令x=0得:a0=1,
∴a1+a2+a3+…+a15=﹣2.
【解析】(Ⅰ)根據(jù)題意,將 按排列、組合公式展開化簡可得(n﹣5)(n﹣6)=90,解可得:n=15或n=﹣4,又由排列、組合數(shù)的定義,可得n的范圍,即可得答案;(Ⅱ)由(Ⅰ)中求得n的值,可得(1﹣2x)15=a0+a1x+a2x2+a3x3+…+a15x15,令x=1可得a0+a1+a2+a3+…+a15=﹣1,令令x=0得a0=1,兩式相減可得答案.
科目:高中數(shù)學 來源: 題型:
【題目】如下圖,漢諾塔問題是指有3根桿子A,B,C.B桿上有若干碟子,把所有碟子從B桿移到A桿上,每次只能移動一個碟子,大的碟子不能疊在小的碟子上面.把B桿上的4個碟子全部移到A桿上,最少需要移動( )次. ( )
A.12 B.15 C.17 D.19
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列函數(shù)f(x)中,滿足“x1x2∈(0,+∞)且x1≠x2有(x1﹣x2)[f(x1)﹣f(x2)]<0”的是( )
A.f(x)= ﹣x
B.f(x)=x3
C.f(x)=lnx+ex
D.f(x)=﹣x2+2x
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義域為R的函數(shù)f(x)= 是奇函數(shù).
(Ⅰ)求a,b的值;
(Ⅱ)已知f(x)在定義域上為減函數(shù),若對任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0(k為常數(shù))恒成立.求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某花店每天以每枝5元的價格從農場購進若干枝玫瑰花,然后以每枝10元的價格出售.如果當天賣不完,剩下的玫瑰花作垃圾處理.
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
頻 數(shù) | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
(1)若花店一天購進17枝玫瑰花,求當天的利潤y(單位:元)關于當天需求量n(單位:枝,n∈N)的函數(shù)解析式;
(2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:
①假設花店在這100天內每天購進17枝玫瑰花,求這100天的日利潤(單位:元)的平均數(shù);
②若花店一天購進17枝玫瑰花,以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當天的利潤不少于75元的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a>0,b>0,且a2+b2= ,若a+b≤m恒成立,
(Ⅰ)求m的最小值;
(Ⅱ)若2|x﹣1|+|x|≥a+b對任意的a,b恒成立,求實數(shù)x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨機擲兩枚質地均勻的骰子,它們向上的點數(shù)之和不超過5的概率記為p1,點數(shù)之和大于5的概率記為p2,點數(shù)之和為偶數(shù)的概率記為p3,則
( )
A. p1<p2<p3 B. p2<p1<p3 C. p1<p3<p2 D. p3<p1<p2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為考察某種藥物預防禽流感的效果,進行動物家禽試驗,調查了100個樣本,統(tǒng)計結果為:服用藥的共有60個樣本,服用藥但患病的仍有20個樣本,沒有服用藥且未患病的有20個樣本.
(1)根據(jù)所給樣本數(shù)據(jù)畫出2×2列聯(lián)表;
(2)請問能有多大把握認為藥物有效?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com