已知數(shù)列滿足對任意的,都有.
(1)求的值;
(2)求數(shù)列的通項公式
(3)設數(shù)列的前項和為,不等式對任意的正整數(shù)恒成立,求實數(shù)的取值范圍.

(1) (2).(3)

解析試題分析:(1)當, 時直接代入條件可求
(2)遞推一項,然后做差得,所以
由于a2-a1=1,即當時都有
所以數(shù)列是首項為1,公差為1的等差數(shù)列,故
(3)由(2)知
利用裂項相消法得Sn,根據(jù)單調遞增得
要使不等式對任意正整數(shù)恒成立,只要
可求得實數(shù)的取值范圍是.
試題解析:((1)當時,有,由于,所以
時,有,將代入上式,由于,所以
(2)由于,①
則有
②-①,得
由于,所以
同樣有(),④
③-④,得,所以
由于a2-a1=1,即當時都有
所以數(shù)列是首項為1,公差為1的等差數(shù)列,故 
(3)由(2)知

所以
∴數(shù)列單調遞增.
所以
要使不等式對任意正整數(shù)恒成立,只要

,即.所以,實數(shù)的取值范圍是.
考點:不等式與數(shù)列綜合題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

已知數(shù)列{an}滿足:a1=m(m為正整數(shù)),,若a6=1,則m所有可能的取值為________________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

為正整數(shù)時,定義函數(shù)表示的最大奇因數(shù).如,,….記.則           .(用來表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

設等比數(shù)列的各項均為正數(shù),公比為,前項和為.若對,有,則的取值范圍是               。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

已知,各項均為正數(shù)的數(shù)列滿足,,若,則的值是        .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

數(shù)列的前項和記為,已知
(Ⅰ)求,,的值,猜想的表達式;
(Ⅱ)請用數(shù)學歸納法證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在數(shù)列中,,且前n項的算術平均數(shù)等于第n項的倍().
(1)寫出此數(shù)列的前5項;
(2)歸納猜想的通項公式,并用數(shù)學歸納法證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

給定數(shù)列
(1)判斷是否為有理數(shù),證明你的結論;
(2)是否存在常數(shù).使都成立? 若存在,找出的一個值, 并加以證明; 若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設數(shù)列{an}共有n)項,且,對每個i (1≤i,iN),均有
(1)當時,寫出滿足條件的所有數(shù)列{an}(不必寫出過程);
(2)當時,求滿足條件的數(shù)列{an}的個數(shù).

查看答案和解析>>

同步練習冊答案