12、關(guān)于x的不等式a x2+4x-1≥-2x2-a恒成立,那么實(shí)數(shù)a的取值范圍是
[2,+∞)
分析:將原不等式整理成關(guān)于x的二次不等式,結(jié)合二次函數(shù)的圖象與性質(zhì)解決即可,注意對(duì)二次項(xiàng)系數(shù)分類討論.
解答:解:不等式ax2+4x-1≥-2x2-a
可化為(a+2)x2+4x+a-1≥0,
當(dāng)a+2=0,即a=-2時(shí),不恒成立,不合題意.
當(dāng)a+2≠0時(shí),要使不等式恒成立,
需解得a≥2.
所以a的取值范圍為[2,+∞).
答案:[2,+∞)
點(diǎn)評(píng):求不等式恒成立的參數(shù)的取值范圍,是經(jīng)久不衰的話題,也是高考的熱點(diǎn),它可以綜合地考查中學(xué)數(shù)學(xué)思想與方法,體現(xiàn)知識(shí)的交匯.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

記關(guān)于x的不等式
a(x-a)x+1
<0
的解集為P,不等式|x-1|≤1的解集為Q.
(1)若a=3,求P;
(2)若a>-1且Q⊆P,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的不等式|a|≥|x+1|+|x-2|存在實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍是
a≥3或a≤-3
a≥3或a≤-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a>1,則關(guān)于x的不等式a(x-a)•(x-
1
a
)<0
的解集為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于x的不等式
a-x
x+b
<0
(a+b)>0的解集是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a∈R,且a>0,解關(guān)于x的不等式
a(x-1)x-2
>1

查看答案和解析>>

同步練習(xí)冊(cè)答案