A. | $\frac{{\sqrt{13}}}{3}$ | B. | $\frac{{\sqrt{13}}}{2}$ | C. | $\frac{3}{2}$ | D. | $\frac{5}{2}$ |
分析 根據(jù)焦點(diǎn)到漸近線的距離為3,求出b=3,結(jié)合雙曲線離心率的定義進(jìn)行求解即可.
解答 解:設(shè)雙曲線的一個(gè)焦點(diǎn)為F(c,0),雙曲線的一條漸近線為y=$±\frac{a}x$,即bx-ay=0,
所以焦點(diǎn)到漸近線的距離d=$\frac{|bc|}{\sqrt{{a}^{2}+^{2}}}=\frac{bc}{c}=b$,即b=3,
由雙曲線C:$\frac{x^2}{4}$-$\frac{y^2}{b^2}$=1(b>0)得a=2,則c=$\sqrt{{a}^{2}+^{2}}$=$\sqrt{{3}^{2}+4}=\sqrt{13}$,
則離心率e=$\frac{c}{a}$=$\frac{{\sqrt{13}}}{2}$,
故選:B.
點(diǎn)評(píng) 本題主要考查雙曲線離心率的計(jì)算,根據(jù)焦點(diǎn)到漸近線的距離求出b的值是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2e | B. | ${e^{\frac{π}{2}}}$ | C. | e | D. | 2${e^{\frac{π}{2}}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 600人 | B. | 800人 | C. | 900人 | D. | 1000人 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限角 | B. | 第二象限角 | C. | 第三象限角 | D. | 第四象限角 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{2}$+1 | C. | 2$\sqrt{2}$ | D. | 2$\sqrt{2}$+2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com