2.在△ABC中,設(shè)$\overrightarrow{AB}=\overrightarrow a$,$\overrightarrow{BC}=\overrightarrow b$,且$|{\overrightarrow a}|=2$,$|{\overrightarrow b}|=1$,$\overrightarrow a•\overrightarrow b=-1$,則$|{\overrightarrow{AC}}|$=( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.$\sqrt{7}$

分析 首先通過設(shè)$\overrightarrow{AB}=\overrightarrow a$,$\overrightarrow{BC}=\overrightarrow b$,且$|{\overrightarrow a}|=2$,$|{\overrightarrow b}|=1$,$\overrightarrow a•\overrightarrow b=-1$,得到三角形的∠B的大小,然后利用余弦定理求對邊AC長度.

解答 解:由已知$\overrightarrow{AB}=\overrightarrow a$,$\overrightarrow{BC}=\overrightarrow b$,且$|{\overrightarrow a}|=2$,$|{\overrightarrow b}|=1$,$\overrightarrow a•\overrightarrow b=-1$,得到cos(π-B)=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}||\overrightarrow|}=-\frac{1}{2}$,所以B=$\frac{π}{3}$,所以AC2=AB2$+B{C}^{2}-2AB×BC×cos\frac{π}{3}$=3,所以AC=$\sqrt{3}$;
故選:C.

點(diǎn)評 本題考查了平面向量的數(shù)量積公式的應(yīng)用以及利用余弦定理求三角形的內(nèi)角.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=x3-3x2+2.
(1)求函數(shù)的單調(diào)區(qū)間;  
(2)求函數(shù)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.命題“方程x2-4=0的解是x=±2”中,使用的邏輯聯(lián)結(jié)詞的情況是(  )
A.沒有使用聯(lián)結(jié)詞B.使用了邏輯聯(lián)結(jié)詞“或”
C.使用了邏輯聯(lián)結(jié)詞“且”D.使用了邏輯聯(lián)結(jié)詞“非”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在正項(xiàng)等差數(shù)列{an}中有$\frac{{{a_{41}}+{a_{42}}+…+{a_{60}}}}{20}=\frac{{{a_1}+{a_2}+…+{a_{100}}}}{100}$成立,則在正項(xiàng)等比數(shù)列{bn}中,類似的結(jié)論為$\root{20}{_{41}•_{42}•_{43•}…•_{60}}=\root{100}{_{1}•_{2}•_{3}•…•_{100}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.通過隨機(jī)詢問100名性別不同的大學(xué)生是否愛好踢毽子,得到如右的列聯(lián)表,經(jīng)計(jì)算,統(tǒng)計(jì)量K2的觀測值k2≈5.762,參照附表,則所得到的統(tǒng)計(jì)學(xué)結(jié)論為:有( 。┌盐照J(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”.
總計(jì)
愛好104050
不愛好203050
總計(jì)3070100
A.0.25%B.2.5%C.97.5%D.99.75%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.Sn為等差數(shù)列{an}的前n項(xiàng)和,且a1=1,S7=28.記bn=[lgan],其中[x]表示不超過x的最大整數(shù),如[0.9]=0,[lg99]=1.
(Ⅰ)求b1,b11,b101
(Ⅱ)求數(shù)列{bn}的前1 000項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)集合M={3,a},N={x|x2-3x<0,x∈Z},M∩N={1},則M∪N為( 。
A.{1,3,a}B.{1,2,3,a}C.{1,2,3}D.{1,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)h(x)=x3-x+6lnx圖象上任意不同的兩點(diǎn)的連線的斜率都大于m,則實(shí)數(shù)m的范圍為(-∞,8).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知雙曲線$\frac{x^2}{m^2}-{y^2}=1$的焦距是4,則該雙曲線的漸近線方程為( 。
A.$y=±\frac{{\sqrt{17}}}{17}x$B.$y=±\frac{{\sqrt{5}}}{5}x$C.$y=±\frac{{\sqrt{15}}}{15}x$D.$y=±\frac{{\sqrt{3}}}{3}x$

查看答案和解析>>

同步練習(xí)冊答案