正△ABC的邊長(zhǎng)為4,CD是AB邊上的高,E、F分別是AC和BC邊的中點(diǎn),現(xiàn)將△ABC沿CD翻折成直二面角A—DC—B。

(1)試判斷直線AB與平面DEF的位置關(guān)系,并說(shuō)明理由;

(2)求二面角E—DF—C的余弦值;

(3)在線段BC上是否存在一點(diǎn)P,使AP⊥DE?證明你的結(jié)論.

 

 

 

【答案】

解:(1)如圖:在△ABC中,由E、F分別是AC、BC中點(diǎn),得EF//AB,

又AB平面DEF,EF平面DEF.   ∴AB∥平面DEF.

 

 

 

(2)∵AD⊥CD,BD⊥CD 

∴∠ADB是二面角A—CD—B的平面角

∴AD⊥BD   ∴AD⊥平面BCD

取CD的中點(diǎn)M,這時(shí)EM∥AD   ∴EM⊥平面BCD

過(guò)M作MN⊥DF于點(diǎn)N,連結(jié)EN,則EN⊥DF

∴∠MNE是二面角E—DF—C的平面角

在Rt△EMN中,EM=1,MN=

∴tan∠MNE=,cos∠MNE= 

(3)在線段BC上存在點(diǎn)P,使AP⊥DE

證明如下:在線段BC上取點(diǎn)P。使,過(guò)P作PQ⊥CD與點(diǎn)Q,

∴PQ⊥平面ACD  ∵在等邊△ADE中,∠DAQ=30°

∴AQ⊥DE∴AP⊥DE

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正△ABC的邊長(zhǎng)為4,CD是AB邊上的高,E、F分別是AC和BC邊的中點(diǎn),現(xiàn)將△ABC沿CD翻折成直二面角A-DC-B
精英家教網(wǎng)
(Ⅰ)試判斷直線AB與平面DEF的位置關(guān)系,并說(shuō)明理由;
(Ⅱ)求二面角E-DF-C的余弦值;
(Ⅲ)在線段BC上是否存在一點(diǎn)P,使AP⊥DE?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

19、如圖所示,正△ABC的邊長(zhǎng)為4,CD是AB邊上的高,E、F分別是AC和BC的中點(diǎn),現(xiàn)將△ABC沿CD翻折成直二面角A-DC-B.
(I)試判斷翻折后直線AB與平面DEF的位置關(guān)系,并說(shuō)明理由;
(II)求直線EF與平面ADC所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•株洲模擬)如圖,正△ABC的邊長(zhǎng)為4,CD是AB邊上的高,E,F(xiàn)分別是AC和BC邊的中點(diǎn),現(xiàn)將△ABC沿CD翻折成直二面角A-DC-B.

(1)試判斷直線AB與平面DEF的位置關(guān)系,并說(shuō)明理由;
(2)求二面角E-DF-C的余弦值;
(3)在線段BC上是否存在一點(diǎn)P,使AP⊥DE?如果存在,求出
BPBC
的值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年安徽省馬鞍山市高三第一次月考理科數(shù)學(xué)試卷 題型:解答題

正△ABC的邊長(zhǎng)為4,CD是AB邊上的高,E,F(xiàn)分別是AC和BC邊的中點(diǎn),現(xiàn)將△ABC沿CD翻折成直二面角A—DC—B。

(I)試判斷直線AB與平面DEF的位置關(guān)系,并說(shuō)明理由;

(II)求二面角E—DF—C的余弦值;

(III)在線段BC上是否存在一點(diǎn)P,使AP⊥DE?證明你的結(jié)論。

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年福建師大附中高二第一學(xué)期期末數(shù)學(xué)理卷 題型:解答題

(本小題12分)

正△ABC的邊長(zhǎng)為4,CD是AB邊上的高,E、F分別是AC和BC邊的中點(diǎn),現(xiàn)將△ABC沿CD翻折成直二面角A—DC—B.

(Ⅰ)試判斷直線AB與平面DEF的位置關(guān)系,并說(shuō)明理由;

(Ⅱ)求直線BC與平面DEF所成角的余弦值;

(Ⅲ)在線段BC上是否存在一點(diǎn)P,使AP⊥DE?證明你的結(jié)論.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案