14.已知圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=-1+cosα}\\{y=1+sinα}\end{array}\right.$ (α為參數(shù)),當圓心C到直線kx+y+4=0的距離最大時,k的值為( 。
A.$\frac{1}{3}$B.$\frac{1}{5}$C.-$\frac{1}{3}$D.-$\frac{1}{5}$

分析 直線kx+y+4=0經(jīng)過定點P(0,-4),當直線與PC垂直時,當圓心C到直線kx+y+4=0的距離最大,利用互相垂直的直線斜率直角的關(guān)系即可得出.

解答 解:圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=-1+cosα}\\{y=1+sinα}\end{array}\right.$ (α為參數(shù)),化為:(x+1)2+(y-1)2=1,可得圓心C(-1,1).
直線kx+y+4=0經(jīng)過定點P(0,-4),當直線與PC垂直時,當圓心C到直線kx+y+4=0的距離最大,∴$\frac{-4-1}{0-(-1)}•(-k)$=-1,
解得k=-$\frac{1}{5}$.
故選:D.

點評 本題考查了互相垂直的直線斜率直角的關(guān)系、直線經(jīng)過定點問題,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.對于數(shù)列{xn},若對任意n∈N+,都有$\frac{{x}_{n}+{x}_{n+2}}{2}<{x}_{n+1}$成立,則稱數(shù)列{xn}為“減差數(shù)列”.設(shè)b${\;}_{n}=2t-\frac{t{n}^{2}-n}{{2}^{n-1}}$,若數(shù)列b${\;}_{5},_{6},_{7},…,_{n}(n≥5,n∈{N}^{+})$是“減差數(shù)列”,則實數(shù)t的取值范圍是($\frac{3}{5}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知向量$\overrightarrow{m}$與向量$\overrightarrow{n}$平行,其中$\overrightarrow{m}$=(2,8),$\overrightarrow{n}$=(-4,t),則t=-16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知在△ABC中,a,b,c分別是∠BAC,∠ABC,∠ACB的對邊,若過點C作垂直于AB的垂線CD,且CD=h,則下列給出的關(guān)于a,b,c,h的不等式中正確的是( 。
A.a+b≥$\sqrt{2{h}^{2}+2{c}^{2}}$B.a+b≥$\sqrt{4{h}^{2}+{c}^{2}}$C.a+b≥$\sqrt{4{h}^{2}+2{c}^{2}}$D.a+b≥$\sqrt{{h}^{2}+2{c}^{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.觀察下列各式:a1=1,a2=3,a3=4,a4=7,a5=11,…則a10=( 。
A.28B.76C.123D.199

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.實驗中學(xué)學(xué)生會將在5月份對各部進行改選,勞動部現(xiàn)從高一甲、乙、丙、丁四個人中選兩名勞動部長,則甲被選中的概率為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)集合A={x|x>0},B={x|x2-5x-14<0},則A∩B等于( 。
A.{x|0<x<5}B.{x|2<x<7}C.{x|2<x<5}D.{x|0<x<7}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,BC⊥PB,PC與平面ABCD所成角的正切值為$\frac{{\sqrt{2}}}{2}$,△BCD為等邊三角形,PA=2$\sqrt{2}$,AB=AD,E為PC的中點.
(1)求AB;
(2)求點E到平面PBD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知集合S={x|1<x≤7},A={x|2≤x<5},B={x|3≤x<7}.求:
(1)(∁SA)∩(∁SB);     
(2)∁S(A∪B).

查看答案和解析>>

同步練習(xí)冊答案