7.在復(fù)平面內(nèi),復(fù)數(shù)z滿足z(1-i)=i,則復(fù)數(shù)z對應(yīng)的點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義、幾何意義即可得出.

解答 解:z(1-i)=i,∴z(1-i)(1+i)=i(1+i),∴z=$-\frac{1}{2}$+$\frac{1}{2}$i.
則復(fù)數(shù)z對應(yīng)的點($-\frac{1}{2}$,$\frac{1}{2}$)在第二象限,
故選:B.

點評 本題考查了復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義、幾何意義,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)$f(x)={x^2}+\sqrt{a}x-b+\frac{1}{4}$(a,b是正實數(shù))只有一個零點,則ab的最大值為$\frac{1}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.半徑為10,面積為100的扇形中,弧所對的圓心角為( 。
A.2B.C.D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.?dāng)?shù)列{an}滿足(-1)nan-an-1=2n,n≥2,則{an}的前100項和為( 。
A.-4750B.4850C.-5000D.4750

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知f(x)=$\frac{1}{x}$,則$\lim_{△x→0}$ $\frac{f(2+△x)-f(2)}{△x}$的值是-$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)全集U=R,集合A=$\left\{{x||{x-a}|<1}\right\},B=\left\{{x|\frac{x+1}{x-2}≤2}\right\}$.
(1)求集合B;
(2)若A⊆(∁UB),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知直線l:y=kx與圓C:(x+6)2+y2=25相交于A,B兩點,$|{AB}|=\sqrt{10}$,求直線l的斜率k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知sinα>0,且$\frac{{2tan\frac{α}{2}}}{{1-{{tan}^2}\frac{α}{2}}}<0$,則α所在象限為(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若$π<θ<\frac{3π}{2}$,則$\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cos2θ}}-\sqrt{1-sinθ}$=$cos\frac{θ}{2}$.

查看答案和解析>>

同步練習(xí)冊答案