求矩陣M的特征值.
λ1=-2,λ2=-3
矩陣M的特征多項(xiàng)式為f(λ)==(λ+2)·(λ+3)=0,令f(λ)=0,得M的特征值為λ1=-2,λ2=-3.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知復(fù)數(shù)z=
(1+2i)2
3-4i
,則
1
|z|
+
.
z
等于( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)矩陣M=(其中a>0,b>0).
(1)若a=2,b=3,求矩陣M的逆矩陣M1;
(2)若曲線C:x2+y2=1在矩陣M所對應(yīng)的線性變換作用下得到曲線C’:,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知矩陣M,其中a∈R,若點(diǎn)P(1,-2)在矩陣M的變換下得到點(diǎn)P′(-4,0),求實(shí)數(shù)a的值;并求矩陣M的特征值及其對應(yīng)的特征向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

矩陣M有特征向量為e1e2,
(1)求e1e2對應(yīng)的特征值;
(2)對向量α,記作αe1+3e2,利用這一表達(dá)式間接計算M4α,M10α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

二階矩陣M對應(yīng)的變換將點(diǎn)(1,-1)與(-2,1)分別變換成點(diǎn)(-1,-1)與(0,-2).設(shè)直線l在變換M作用下得到了直線m:2x-y=4,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)系中,已知△ABC的頂點(diǎn)坐標(biāo)為A,B,C.求△ABC在矩陣作用下變換所得到的圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知矩陣M,△ABC的頂點(diǎn)為A(0,0),B(2,0),C(1,2),求△ABC在矩陣M-1的變換作用下所得△ABC′的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù),則     

查看答案和解析>>

同步練習(xí)冊答案