函數(shù)f(x)=ax2+bx+c(a≠0)的圖象關于直線對稱。據(jù)此可推測對任意的非0實數(shù)a、b、c、m、n、g關于x的方程m[f(x)]2+n f(x)+g=0的解集不可能是(     )

A.{1,3}B.{2,4}C.{1,2,3,4}D.{1,2,4,8}

D

解析試題分析:∵的對稱軸為直線,令設方程的解為, ,則必有,,那么從圖象上看,,是一條平行于軸的直線它們與有交點,由于對稱性,則方程的兩個解、要關于直線對稱,也就是說,同理方程的兩個解要關于直線對稱,那就得到;在C中,可以找到對稱軸直線,也就是1,4為一個方程的解,2,3為一個方程的解,所以得到的解的集合可以是{1,2,3,4},而在D中,{1,2,4,8}找不到這樣的組合使得對稱軸一致,也就是說無論怎么分組,都沒辦法使得其中兩個的和等于另外兩個的和,故答案D不可能.故選D.
考點定位:二次函數(shù)的性質.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:單選題

,函數(shù)在區(qū)間上的最大值與最小值之差為,則 (   )

A. B.2 C. D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

,則下列不等式成立的是(      )

A.若,則
B.若,則
C.若,則
D.若,則

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

要制作一個容積為,高為1m的無蓋長方體容器,已知該溶器的底面造價是每平方米20元,側面造價是是每平方米10元,則該容器的最低總造價是    (   )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知,則(    )

A. B. C. D. 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知,則下列關系中正確的是(  )

A.a(chǎn)>b>c B.b>a>c C.a(chǎn)>c>b D.c>a>b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

某工廠需要建一個面積為512 m2的矩形堆料場,一邊可以利用原有的墻壁,其他三邊需要砌新的墻壁,當砌新墻所用材料最省時,堆料場的長和寬的比為(  )

A.1 B.2 C. D. 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

函數(shù)y=的定義域是(-∞,1)∪[2,5),則其值域是(  )

A.(-∞,0)∪(,2] B.(-∞,2]
C.(-∞,)∪[2,+∞) D.(0,+∞)

查看答案和解析>>

同步練習冊答案