19.已知曲線C1:$\left\{{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}}$(θ為參數(shù)),曲線C2:$\left\{{\begin{array}{l}{x=\frac{{\sqrt{2}}}{2}t-\sqrt{2}}\\{y=\frac{{\sqrt{2}}}{2}t}\end{array}}$(t為參數(shù)).
(1)指出C1,C2各是什么曲線;
(2)求曲線C1與C2公共點(diǎn)M的坐標(biāo).

分析 (1)消去參數(shù),得到曲線對(duì)應(yīng)的普通方程,然后進(jìn)行判斷即可.

解答 解:(1)C1是圓,C2是直線,C1的普通方程是x2+y2=1,C2的普通方程是$x-y+\sqrt{2}=0$,
(2)因?yàn)閳A心C1到直線$x-y+\sqrt{2}=0$的距離是1,
所以C1與C2只有一個(gè)公共點(diǎn).
聯(lián)立$\left\{{\begin{array}{l}{{x^2}+{y^2}=1}\\{x-y+\sqrt{2}=0}\end{array}}\right.$,解得$\left\{{\begin{array}{l}{x=-\frac{{\sqrt{2}}}{2}}\\{y=\frac{{\sqrt{2}}}{2}}\end{array}}\right.$,
即M的坐標(biāo)為$(-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2})$.

點(diǎn)評(píng) 本題主要考查坐標(biāo)系和參數(shù)方程的應(yīng)用,消去參數(shù)轉(zhuǎn)化為普通方程是解決本題的關(guān)鍵.比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.在△ABC中,D是邊AC的中點(diǎn),若A=$\frac{π}{3}$,cos∠BDC=-$\frac{2\sqrt{7}}{7}$,△ABC面積為3$\sqrt{3}$,則sin∠ABD=$\frac{3\sqrt{21}}{14}$,邊長(zhǎng)BC=2$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.執(zhí)行如圖程序框圖,則輸出的A是$\frac{70}{29}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.在平面直角坐標(biāo)系xOy中,以點(diǎn)A(2,0),曲線y=$\sqrt{1-{x^2}}$上的動(dòng)點(diǎn)B,第一象限內(nèi)的點(diǎn)C,構(gòu)成等腰直角三角形ABC,且∠A=90°,則線段OC長(zhǎng)的最大值是1+2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=$\frac{mx+1}{{e}^{x}}$的極大值為1
(Ⅰ)求函數(shù)y=f(x)(x≥-1)的值域;
(Ⅱ)若關(guān)于的方程a•ex-x-1=0有兩個(gè)不相等的實(shí)數(shù)根x1,x2,求證;x1+x2>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若點(diǎn)P在函數(shù)y=-x2+3lnx的圖象上,點(diǎn)Q在函數(shù)y=x+2的圖象上,則|PQ|的最小值為( 。
A.$\sqrt{2}$B.2C.2$\sqrt{2}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.函數(shù)y=3$\sqrt{x}$+$\frac{32}{9x}$的最小值是(  )
A.24B.6$\sqrt{2}$C.6$\sqrt{3}$D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知x,y為正數(shù),且x+y=20,則m=lgx+lgy的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.如圖,在半徑為R的圓內(nèi)隨機(jī)撒一粒黃豆,它落在陰影部分內(nèi)接正三角形上的概率是$\frac{3\sqrt{3}}{4π}$

查看答案和解析>>

同步練習(xí)冊(cè)答案