【題目】設(shè),函數(shù).
(1)若,求證:函數(shù)為奇函數(shù);
(2)若,判斷并證明函數(shù)的單調(diào)性;
(3)若,函數(shù)在區(qū)間上的取值范圍是,求的范圍.
【答案】(1)見解析;(2)函數(shù)為上的單調(diào)遞增,證明見解析;(3)當(dāng)時(shí),;當(dāng)時(shí),.
【解析】
(1)當(dāng)時(shí),函數(shù),根據(jù)函數(shù)奇偶性得,進(jìn)而得出結(jié)論.
(2)當(dāng)時(shí),函數(shù)的定義域?yàn)?/span>,通過單調(diào)性的定義法的五步①設(shè)元②作差③變形④定號(hào)⑤下結(jié)論.
(3)因?yàn)?/span>,,所以,分,兩種情況討論函數(shù)在區(qū)間上的取值范圍是,進(jìn)而得出結(jié)論.
解:(1)當(dāng)時(shí),函數(shù),
因?yàn)?/span>,所以,即定義域?yàn)?/span>
從而對(duì)任意的,,
所以為奇函數(shù).
(2)當(dāng)時(shí),因?yàn)?/span>,所以,
所以函數(shù)的定義域?yàn)?/span>.
結(jié)論:函數(shù)為上的單調(diào)遞增函數(shù).
證明:設(shè)對(duì)任意的,,且,
則
,
因?yàn)?/span>,所以,即,
又因?yàn)?/span>,,,
所以,
于是,即函數(shù)為上的單調(diào)遞增.
(3)因?yàn)?/span>,所以,從而,
由,知,所以,
因?yàn)?/span>,所以或.
當(dāng)時(shí),由(2)知,函數(shù)為上單調(diào)遞增函數(shù).
因?yàn)楹瘮?shù)在區(qū)間上的取值范圍是
所以,即,
從而關(guān)于的方程 有兩個(gè)互異實(shí)數(shù)根.
令,則,所以方程,有兩個(gè)互異實(shí)數(shù)根
,從而.
當(dāng)時(shí),函數(shù)在區(qū)間,上均單調(diào)遞減.
若,則,于是,這與矛盾,故舍去.
若,則,于是,即,
所以,兩式相減整理得,,
又,故,從而,因?yàn)?/span>,所以.
綜上可得,當(dāng)時(shí),
當(dāng)時(shí),.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線的焦點(diǎn)為F ,已知點(diǎn)A ,B 為拋物線上的兩個(gè)動(dòng)點(diǎn),且滿足.過弦AB 的中點(diǎn)M 作拋物線準(zhǔn)線的垂線MN ,垂足為N,則 的最大值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為迎接2017年“雙”,“雙”購物狂歡節(jié)的來臨,某青花瓷生產(chǎn)廠家計(jì)劃每天生產(chǎn)湯碗、花瓶、茶杯這三種瓷器共個(gè),生產(chǎn)一個(gè)湯碗需分鐘,生產(chǎn)一個(gè)花瓶需分鐘,生產(chǎn)一個(gè)茶杯需分鐘,已知總生產(chǎn)時(shí)間不超過小時(shí).若生產(chǎn)一個(gè)湯碗可獲利潤(rùn)元,生產(chǎn)一個(gè)花瓶可獲利潤(rùn)元,生產(chǎn)一個(gè)茶杯可獲利潤(rùn)元.
(1)使用每天生產(chǎn)的湯碗個(gè)數(shù)與花瓶個(gè)數(shù)表示每天的利潤(rùn)(元);
(2)怎樣分配生產(chǎn)任務(wù)才能使每天的利潤(rùn)最大,最大利潤(rùn)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.現(xiàn)有如下兩種圖象變換方案:
方案1:將函數(shù)的圖像上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼囊话,縱坐標(biāo)不變,再將所得圖象向左平移個(gè)單位長(zhǎng)度;
方案2:將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,再將所得圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼囊话,縱坐標(biāo)不變.
請(qǐng)你從中選擇一種方案,確定在此方案下所得函數(shù)的解析式,并解決如下問題:
(1)畫出函數(shù)在長(zhǎng)度為一個(gè)周期的閉區(qū)間上的圖象;
(2)請(qǐng)你研究函數(shù)的定義域,值域,周期性,奇偶性以及單調(diào)性,并寫出你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】即將開工的南昌與周邊城鎮(zhèn)的輕軌火車路線將大大緩解交通的壓力,加速城鎮(zhèn)之間的流通.根據(jù)測(cè)算,如果一列火車每次拖4節(jié)車廂,每天能來回16次;如果一列火車每次拖7節(jié)車廂,每天能來回10次,每天來回次數(shù)是每次拖掛車廂個(gè)數(shù)的一次函數(shù).
(1)寫出與的函數(shù)關(guān)系式;
(2)每節(jié)車廂一次能載客110人,試問每次應(yīng)拖掛多少節(jié)車廂才能使每天營(yíng)運(yùn)人數(shù)最多?并求出每天最多的營(yíng)運(yùn)人數(shù)(注:營(yíng)運(yùn)人數(shù)指火車運(yùn)送的人數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,定義:表示不超過的最大整數(shù),例如:,.
(1)若,寫出實(shí)數(shù)的取值范圍;
(2)若,且,求實(shí)數(shù)的取值范圍;
(3)設(shè),,若對(duì)于任意的,都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)調(diào)查,3個(gè)成年人中就有一個(gè)高血壓,那么什么是高血壓?血壓多少是正常的?經(jīng)國(guó)際衛(wèi)生組織對(duì)大量不同年齡的人群進(jìn)行血壓調(diào)查,得出隨年齡變化,收縮壓的正常值變化情況如下表:
年齡x | 28 | 32 | 38 | 42 | 48 | 52 | 58 | 62 |
收縮壓單位 | 114 | 118 | 122 | 127 | 129 | 135 | 140 | 147 |
其中:,,
請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;
請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;的值精確到
若規(guī)定,一個(gè)人的收縮壓為標(biāo)準(zhǔn)值的倍,則為血壓正常人群;收縮壓為標(biāo)準(zhǔn)值的倍,則為輕度高血壓人群;收縮壓為標(biāo)準(zhǔn)值的倍,則為中度高血壓人群;收縮壓為標(biāo)準(zhǔn)值的倍及以上,則為高度高血壓人群一位收縮壓為180mmHg的70歲的老人,屬于哪類人群?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. “f(0)”是“函數(shù)f(x)是奇函數(shù)”的充要條件
B. 若p:,,則:,
C. “若,則”的否命題是“若,則”
D. 若為假命題,則p,q均為假命題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com