選修4--1:幾何證明選講
如圖,D為△ABC的BC邊上的一點,⊙O1經(jīng)過點B、D,交AB于另一點E,⊙O2經(jīng)過點C、D,交AC于另一點F,⊙O1、⊙O2交于點G.求證:
(1)∠BAC+∠EGF=180°;
(2)∠EAG=∠EFG.

解:(1)連接GD,
∵四邊形BDGE是圓內(nèi)接四邊形,
∴∠EGD+∠B=180°,同理可得∠FGD+∠C=180°,
∴∠EGD+∠B+∠FGD+∠C=360°,
∵∠EGD+∠FGD+∠EGF=360°,
∴∠B+∠C=∠EGF
∵△ABC中,∠B+∠C+∠BAC=180°
∴∠BAC+∠EGF=180°.
(2)∵四邊形AEGF中,∠BAC+∠EGF=180°.
∴四邊形AEGF是圓內(nèi)接內(nèi)接四邊形,
設外接圓為圓M,則圓M中∠EAG和∠EFG同對弧EG
∴∠EAG=∠EFG.
分析:(1)連接GD,由圓內(nèi)接四邊形的性質,可得∠EGD與∠B互補,∠FGD與∠C互補,從而∠EGD+∠B+∠FGD+∠C=360°,結合周角也等于360°,得到∠B+∠C=∠EGF,最后結合三角形內(nèi)角和定理,得到∠BAC+∠EGF=180°.
(2)由(1)的結論,得到四邊形AEGF是圓內(nèi)接內(nèi)接四邊形,結合同弧所對的圓周角相等,得到∠EAG=∠EFG.
點評:本題以三角形內(nèi)角和與圓內(nèi)接四邊形為例,考查了與圓有關的角相等和角互補的證明,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•遼寧)選修4-1:幾何證明選講
如圖,⊙O和⊙O′相交于A,B兩點,過A作兩圓的切線分別交兩圓于C,D兩點,連接DB并延長交⊙O于點E.證明:
(Ⅰ)AC•BD=AD•AB;
(Ⅱ)AC=AE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選修4-1:幾何證明選講
已知AD是△ABC的外角∠EAC的平分線,交BC的延長線于點D,延長DA交△ABC的外接圓于點F,連接FB,F(xiàn)C.
(1)求證:FB=FC;
(2)若AB是△ABC外接圓的直徑,∠EAC=120°,BC=6,求AD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選修4-1:幾何證明選講
如圖,圓O為△ABC的外接圓,且AB=AC,過點A的直線交圓O于點D,交BC的延長線于點F,DE是BD的延長線,連接CD.
(Ⅰ)求證:∠EDF=∠CDF;
(Ⅱ)求證:AB2=AF•AD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選修4-1:幾何證明選講
如圖設M為線段AB中點,AE與BD交于點C∠DME=∠A=∠B=α,且DM交AC于F,EM交BD于G.
(1)寫出圖中三對相似三角形,并對其中一對作出證明;
(2)連接FG,設α=45°,AB=4
2
,AF=3,求FG長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•江蘇三模)選修4-1:幾何證明選講
如圖,半徑分別為R,r(R>r>0)的兩圓⊙O,⊙O1內(nèi)切于點T,P是外圓⊙O上任意一點,連PT交⊙O1于點M,PN與內(nèi)圓⊙O1相切,切點為N.求證:PN:PM為定值.

查看答案和解析>>

同步練習冊答案