考點:利用導(dǎo)數(shù)研究曲線上某點切線方程
專題:計算題,導(dǎo)數(shù)的概念及應(yīng)用,導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)求出當(dāng)a=-1時的函數(shù)的導(dǎo)數(shù),切線的斜率,切點坐標(biāo),再由點斜式方程,即可得到切線方程;
(2)求出f(x)的導(dǎo)數(shù),令g(x)=ax
2-x+1-a,x>0,對a討論,當(dāng)a=0時,當(dāng)a≠0時,①a=
,②若0<a<
,③當(dāng)a<0時,函數(shù)的單調(diào)性,寫出單調(diào)區(qū)間即可.
解答:
解:(1)當(dāng)a=-1時,f(x)=lnx+x+
-1(x>0),
f′(x)=
+1-
,f(2)=ln2+2,f′(2)=1,
則切線方程為:y=x+ln2;
(2)因為f(x)=lnx-ax+
-1,
所以f′(x)=
-a
+=-
(x>0),
令g(x)=ax
2-x+1-a,x>0,
(i)當(dāng)a=0時,g(x)=-x+1(x>0),
所以當(dāng)0<x<1時g(x)>0,f′(x)<0,此時函數(shù)f(x)單調(diào)遞減,
x∈(1,∞)時,g(x)<0,f′(x)>0此時函數(shù)f,(x)單調(diào)遞增.
(ii)當(dāng)a≠0時,由f(x)=0,解得:x
1=1,x
2=1-
,
①a=
,函數(shù)f(x)在x>0上單調(diào)遞減,
②若0<a<
,在(0,1),(
-1,+∞)單調(diào)遞減,在(1,
-1)上單調(diào)遞增.
③當(dāng)a<0時,由于
-1<0,
x∈(0,1)時,g(x)>0,此時f′(x)<0,函數(shù)f(x)單調(diào)遞減;
x∈(1,∞)時,g(x)<0,f′(x)>0,此時函數(shù)f(x)單調(diào)遞增.
綜上所述:
當(dāng)a≤0 時,函數(shù)f(x)在(0,1)上單調(diào)遞減;
函數(shù)f(x)在 (1,+∞) 上單調(diào)遞增
當(dāng)a=
時,函數(shù)f(x)在(0,+∞)上單調(diào)遞減
當(dāng)0<a<
時,函數(shù)f(x)在(0,1),(
-1,+∞)單調(diào)遞減,
在(1,
-1)上單調(diào)遞增.
點評:本題考查導(dǎo)數(shù)的運用:求切線方程和單調(diào)區(qū)間,考查分類討論的思想方法,考查運算能力,屬于中檔題.