【題目】定義在R上的函數(shù)f(x)>0,對任意x,y∈R都有f(x+y)=f(x) f(y)成立,且當x>0時,f(x)>1.
(1)求f(0)的值;
(2)求證f(x)在R上是增函數(shù);
(3)若f(k3x)f(3x﹣9x﹣2)<1對任意x∈R恒成立,求實數(shù)k的取值范圍.
【答案】(1)f(0)=1;(2)見解析;(3)k<
【解析】
(1)利用賦值法求f(0)的值;
(2)根據(jù)增函數(shù)定義進行證明,其中利用條件“當x>0時,f(x)>1”比較大小是解題關(guān)鍵;
(3)先根據(jù)單調(diào)性化簡不等式得32x﹣(1+k)3x+2>0,再分離變量轉(zhuǎn)化為求對應(yīng)函數(shù)y=3x+最值,最后根據(jù)基本不等式求函數(shù)最值,即得結(jié)果.
(1)令x=0,y=1,則f(0+1)=f(0)f(1),所以f(1)=f(0)f(1),
∵當x>0時,f(x)>1,∴f(1)>1,∴f(0)=1;
(2)設(shè)x1<x2,則x2﹣x1>0,∵當x>0時,f(x)>1,∴f(x2﹣x1)>1
∴f(x2)=f(x2﹣x1+x1)=f(x2﹣x1)f(x1)>f(x1),∴f(x)在R上是增函數(shù);
(3)∵f(x)在R上是增函數(shù),f(k3x) f(3x﹣9x﹣2)=f(k 3x+3x﹣9x﹣2)<f(0),
∴32x﹣(1+k)3x+2>0對任意x∈R成立.∴1+k<3x+,∵3x>0,∴3x+≥.
∴k<.
科目:高中數(shù)學 來源: 題型:
【題目】對于一個具有正南正北、正東正西方向規(guī)則布局的城鎮(zhèn)街道,從一點到另一點的距離是在南北方向上行進的距離加上在東西方向上行進的距離,這種距離即“曼哈頓距離”,也叫“出租車距離”.對于平面直角坐標系中的點和,兩點間的“曼哈頓距離”.
(1)如圖,若為坐標原點,,兩點坐標分別為和,求,,;
(2)若點滿足,試在圖中畫出點的軌跡,并求該軌跡所圍成圖形的面積;
(3)已知函數(shù),試在圖象上找一點,使得最小,并求出此時點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為弘揚民族文化,某學校學生全員參與舉行了“我愛國學,傳誦經(jīng)典”考試,并從中抽取名學生的成績(百分制)作為樣本,得到頻率分布直方圖如圖所示.成績落在中的人數(shù)為20.
(1)求和的值;
(2)根據(jù)樣本估計總體的思想,估計該校學生數(shù)學成績的平均數(shù)和中位數(shù);(同一組數(shù)據(jù)中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表)
(3)若成績在80分以上(含80分)為“國學小達人”.若在樣本中,利用分層抽樣的方法從“國學小達人”中隨機抽取5人,再從中抽取2人贈送一套國學經(jīng)典,記“抽中的2名學生成績都不低于90分”為事件,求;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某群體的人均通勤時間,是指單日內(nèi)該群體中成員從居住地到工作地的平均用時.某地上班族中的成員僅以自駕或公交方式通勤.分析顯示:當中()的成員自駕時,自駕群體的人均通勤時間為(單位:分鐘),而公交群體的人均通勤時間不受影響,恒為分鐘,試根據(jù)上述分析結(jié)果回答下列問題:
(1)當在什么范圍內(nèi)時,公交群體的人均通勤時間少于自駕群體的人均通勤時間?
(2)求該地上班族的人均通勤時間的表達式;討論的單調(diào)性,并說明其實際意義.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x,且此函數(shù)圖象過點(1,2).
(1)求實數(shù)m的值;
(2)判斷函數(shù)f(x)的奇偶性并證明;
(3)討論函數(shù)f(x)在(0,1)上的單調(diào)性,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com