【題目】動圓與圓相外切且與軸相切,則動圓的圓心的軌跡記,
(1)求軌跡的方程;
(2)定點到軌跡(1)上任意一點的距離的最小值;
(3)經(jīng)過定點的直線,試分析直線與軌跡的公共點個數(shù),并指明相應(yīng)的直線的斜率是否存在,若存在求的取值或取值范圍情況.
【答案】(1)當(dāng)時,;當(dāng)時,;(2)時,的最小值為;(3)見解析.
【解析】
(1)設(shè)出動圓圓心的坐標,利用動圓與軸相切且與圓外切建立方程,化簡得答案;(2)設(shè)的坐標,利用兩點間的距離公式結(jié)合配方法求得定點到軌跡上任意一點的距離的最小值;(3)寫出過斜率存在的直線方程,聯(lián)立直線方程與拋物線方程,由判別式等于0求得值,再結(jié)合圖形求得直線與軌跡的公共點個數(shù),并分析對應(yīng)的斜率情況.
(1)設(shè)動圓圓心的坐標為,則
,
當(dāng)時,;當(dāng)時,;
(2)如圖,由圖可知,到軌跡上的點與的距離最小,則在拋物線上,
設(shè),則.
當(dāng),即時,的最小值為;
(3)設(shè)過與拋物線相切的直線方程為,即,
聯(lián)立,得.
由△,解得:或.
又,
當(dāng)直線的斜率不存在時或斜率存在為0時或直線的斜率,,時,與有1個交點;
當(dāng)直線的斜率為或或,時,與有2個交點;
當(dāng)直線的斜率,,時,與有3個交點.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中為自然對數(shù)的底數(shù).
(1)若,求的單調(diào)區(qū)間;
(2)若,,求證:無零點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知表1和表2是某年部分日期的天安門廣場升旗時刻表.
表1:某年部分日期的天安門廣場升旗時刻表
日期 | 升旗時刻 | 日期 | 升旗時刻 | 日期 | 升旗時刻 | 日期 | 升旗時刻 |
1月1日 | 7:36 | 4月9日 | 5:46 | 7月9日 | 4:53 | 10月8日 | 6:17 |
1月21日 | 7:31 | 4月28日 | 5:19 | 7月27日 | 5:07 | 10月26日 | 6:36 |
2月10日 | 7:14 | 5月16日 | 4:59 | 8月14日 | 5:24 | 11月13日 | 6:56 |
3月2日 | 6:47 | 6月3日 | 4:47 | 9月2日 | 5:42 | 12月1日 | 7:16 |
3月22日 | 6:15 | 6月22日 | 4:46 | 9月20日 | 5:59 | 12月20日 | 7:31 |
表2:某年2月部分日期的天安門廣場升旗時刻表
日期 | 升旗時刻 | 日期 | 升旗時刻 | 日期 | 升旗時刻 |
2月1日 | 7:23 | 2月11日 | 7:13 | 2月21日 | 6:59 |
2月3日 | 7:22 | 2月13日 | 7:11 | 2月23日 | 6:57 |
2月5日 | 7:20 | 2月15日 | 7:08 | 2月25日 | 6:55 |
2月7日 | 7:17 | 2月17日 | 7:05 | 2月27日 | 6:52 |
2月9日 | 7:15 | 2月19日 | 7:02 | 2月28日 | 6:49 |
(Ⅰ)從表1的日期中隨機選出一天,試估計這一天的升旗時刻早于7:00的概率;
(Ⅱ)甲,乙二人各自從表2的日期中隨機選擇一天觀看升旗,且兩人的選擇相互獨立.記為這兩人中觀看升旗的時刻早于7:00的人數(shù),求的分布列和數(shù)學(xué)期望.
(Ⅲ)將表1和表2中的升旗時刻化為分數(shù)后作為樣本數(shù)據(jù)(如7:31化為).記表2中所有升旗時刻對應(yīng)數(shù)據(jù)的方差為,表1和表2中所有升旗時刻對應(yīng)數(shù)據(jù)的方差為,判斷與的大。ㄖ恍鑼懗鼋Y(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國家統(tǒng)計局進行第四次經(jīng)濟普查,某調(diào)查機構(gòu)從15個發(fā)達地區(qū),10個欠發(fā)達地區(qū),5個貧困地區(qū)中選取6個作為國家綜合試點地區(qū),然后再逐級確定普查區(qū)域,直到基層的普查小區(qū).普查過程中首先要進行宣傳培訓(xùn),然后確定對象,最后入戶登記,由于種種情況可能會導(dǎo)致入戶登記不夠順利,這為正式普查提供了寶貴的試點經(jīng)驗,在某普查小區(qū),共有50家企事業(yè)單位,150家個體經(jīng)營戶,普查情況如下表所示:
普查對象類別 | 順利 | 不順利 | 合計 |
企事業(yè)單位 | 40 | 10 | 50 |
個體經(jīng)營戶 | 90 | 60 | 150 |
合計 | 130 | 70 | 200 |
(1)寫出選擇6個國家綜合試點地區(qū)采用的抽樣方法;
(2)根據(jù)列聯(lián)表判斷是否有97.5%的把握認為“此普查小區(qū)的入戶登記是否順利與普查對象的類別有關(guān)”,分析造成這個結(jié)果的原因并給出合理化建議.
附:參考公式: ,其中
參考數(shù)據(jù):
| 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
| 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直四棱柱,底面底面為平行四邊形,,且三條棱的長組成公比為的等比數(shù)列,
(1)求異面直線與所成角的大小;
(2)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】梯形中,,矩形所在平面與平面垂直,且,.
(1)求證:平面平面;
(2)若P為線段上一點,且異面直線與所成角為45°,求平面與平面所成銳角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)站針對“2014年法定節(jié)假日調(diào)休安排”展開的問卷調(diào)查,提出了A、B、C三種放假方案,調(diào)查結(jié)果如下:
支持A方案 | 支持B方案 | 支持C方案 | |
35歲以下 | 200 | 400 | 800 |
35歲以上(含35歲) | 100 | 100 | 400 |
(1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取n個人,已知從“支持A方案”的人中抽取了6人,求n的值;
(2)在“支持B方案”的人中,用分層抽樣的方法抽取5人看作一個總體,從這5人中任意選取2人,求恰好有1人在35歲以上(含35歲)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點A是橢圓的上頂點,斜率為的直線交橢圓E于A、M兩點,點N在橢圓E上,且.
(1)當(dāng)時,求的面積;
(2)當(dāng)時,求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com