某小商品2013年的價(jià)格為8元/件,年銷量為a件,現(xiàn)經(jīng)銷商計(jì)劃在2014年將該商品的價(jià)格降至5.5元/件到7.5元/件之間,經(jīng)調(diào)查,顧客的期望價(jià)格為4元/件,經(jīng)測算,該商品的價(jià)格下降后新增的年銷量與實(shí)際價(jià)格和顧客期望價(jià)格的差成反比,比例系數(shù)為k,該商品的成本價(jià)格為3元/件.
(1)寫出該商品價(jià)格下降后,經(jīng)銷商的年收益y與實(shí)際價(jià)格x的函數(shù)關(guān)系式;
(2)設(shè)k=2a,當(dāng)實(shí)際價(jià)格最低定為多少時(shí),仍然可以保證經(jīng)銷商2014年的收益比2013年至少增長20%?
考點(diǎn):函數(shù)最值的應(yīng)用
專題:應(yīng)用題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)先根據(jù)題意設(shè)商品價(jià)格下降后為x元/件,銷量增加到(a+
k
x-4
)件,即可求出經(jīng)銷商的年收益y與實(shí)際價(jià)格x的函數(shù)關(guān)系式;
(2)依題意保證經(jīng)銷商2014年的收益比2013年至少增長20%,得到關(guān)于x的不等關(guān)系,解此不等式即得出結(jié)論.
解答: 解:(1)設(shè)該商品價(jià)格下降后為x元/件,銷量增加到(a+
k
x-4
)件,
年收益y=(a+
k
x-4
)(x-3)(5.5≤x≤7.5),
(2)當(dāng)k=2a時(shí),依題意有(a+
2a
x-4
)(x-3)≥(8-3)a×(1+20%),
解之得x≥6或4<x≤5,
又5.5≤x≤7.5,
所以6≤x≤7.5,
因此當(dāng)實(shí)際價(jià)格最低定為6元/件時(shí),仍然可以保證經(jīng)銷商2014年的收益比2013年至少增長20%.
點(diǎn)評:本小題主要考查建立函數(shù)關(guān)系、解不等式等基礎(chǔ)知識,考查綜合應(yīng)用數(shù)學(xué)知識、思想和方法解決實(shí)際問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>0,b>0)過點(diǎn)(5,0),離心率為
3
5
,求C的標(biāo)準(zhǔn)方程,長軸長,短軸長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對應(yīng)的邊分別為a、b、c,且滿足cos
A
2
=
2
5
5
,
AB
AC
=3.
(Ⅰ)求△ABC的面積;
(Ⅱ)若c=1,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2
3
cosxsinx+2cos2x
(1)求f(
3
)的值;
(2)當(dāng)x∈[0,
π
2
]時(shí),求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的不等式
2
x
<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過橢圓E:
x2
2
+y2=1的右焦點(diǎn)且垂直于x軸的直線與橢圓E相交于A,B 兩點(diǎn),直線l:y=mx+n與橢圓E交于C,D兩點(diǎn),與線段AB相交于點(diǎn)P(與A,B不重合).
(Ⅰ)當(dāng)m=1時(shí),四邊形ACBD能否成為平行四邊形,請說明理由;
(Ⅱ)當(dāng)直線l與圓x2+y2=1相切時(shí),四邊形ACBD的面積是否有最大值,若有,求出其最大值,及對應(yīng)的直線l的方程;若沒有,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知銳角△ABC中,內(nèi)角A,B,C的對邊的邊長為a,b,c,且a、b、c成等比數(shù)列,且a2-c2=ac-bc,
(1)求∠A的大小;
(2)若y=cos2B+cos2C,求y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,勘探隊(duì)員朝一座山行進(jìn),在前后A、B兩處觀察山頂C的仰角分別是30°和45°,兩個(gè)觀察點(diǎn)A、B之間的距離是200米,則此山CD的高度為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于以下結(jié)論:
①若y=f(x)是奇函數(shù),則f(0)=0;
②已知p:事件A,B是對立事件;q:事件A,B是互斥事件;則p是q的必要但不充分條件;
③若
a
=(1,2),
b
=(0,-1),則
b
a
上的投影為-
2
5
5
;
ln5
5
ln3
3
1
e
(e為自然對數(shù)的底);
⑤函數(shù)y=log2
x+2
2
的圖象可以由函數(shù)y=log2x圖象先左移2個(gè)單位,再向下平移1個(gè)單位而來.
其中,正確結(jié)論的序號為
 

查看答案和解析>>

同步練習(xí)冊答案