已知銳角△ABC中,內(nèi)角A,B,C的對邊的邊長為a,b,c,且a、b、c成等比數(shù)列,且a2-c2=ac-bc,
(1)求∠A的大小;
(2)若y=cos2B+cos2C,求y的取值范圍.
考點(diǎn):余弦定理,等比數(shù)列的性質(zhì)
專題:解三角形
分析:(1)等比數(shù)列 可推知b2=ac 代入原式,求得a2=b2+c2-bc,進(jìn)而根據(jù)余弦定理求得cosA的值,進(jìn)而求得A的值.
(2)利用三角形的內(nèi)角和以及兩角和與差的三角函數(shù)化簡函數(shù)為一個角的一個三角函數(shù)的形式,通過角的范圍,求出函數(shù)的值域即可.
解答: 解:(1)∵a,b,c成等比數(shù)列,
∴b2=ac,代入原式得a2-c2=b2-bc,即a2=b2+c2-bc.
根據(jù)余弦定理a2=b2+c2-2bcCosA,∴2cosA=1,cosA=
1
2
,∴A=60°.
(2)由 cos2B+cos2C
=
1+cos2B
2
+
1+cos2C
2

=1+
1
2
cos2B+
1
2
cos(
3
-2B)
=1+
1
2
cos2B+
1
2
(cos
3
cos2A+sin
3
sin2B)
=1+
1
4
cos2B-
3
4
sin2B
=1+2cos(2B+
π
3
).
再由∵a,b,c成等比數(shù)列
A<
π
3
<C,可得
π
3
<2B+
π
3
<π,
由于函數(shù)y=1+2cos(2B+
π
6
)在2B+
π
3
∈(
π
3
,π)上是減函數(shù),
∴y∈(-1,2).
點(diǎn)評:本題主要考查了等比數(shù)列的性質(zhì)和正弦定理及余弦定理的運(yùn)用.正弦定理和余弦定理是解三角形問題的常用的方法,通過邊和角的互化,達(dá)到解題的目的,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(2-a)(x-1)-2lnx,g(x)=ex-x+1.(a為常數(shù),e為自然對數(shù)的底)
(1)當(dāng)a=1時,求f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間(0,
1
2
)無零點(diǎn),求a的最小值;
(3)若對任意給定的x0∈(0,1],在(0,e]上總存在兩個不同的xi(i=1,2),使得f(xi)=g(x0)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+
π
3
)(其中A>0,ω>0)的振幅為2,周期為π.
(Ⅰ)求f(x)的解析式;
(Ⅱ)求f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某小商品2013年的價格為8元/件,年銷量為a件,現(xiàn)經(jīng)銷商計劃在2014年將該商品的價格降至5.5元/件到7.5元/件之間,經(jīng)調(diào)查,顧客的期望價格為4元/件,經(jīng)測算,該商品的價格下降后新增的年銷量與實(shí)際價格和顧客期望價格的差成反比,比例系數(shù)為k,該商品的成本價格為3元/件.
(1)寫出該商品價格下降后,經(jīng)銷商的年收益y與實(shí)際價格x的函數(shù)關(guān)系式;
(2)設(shè)k=2a,當(dāng)實(shí)際價格最低定為多少時,仍然可以保證經(jīng)銷商2014年的收益比2013年至少增長20%?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在(-∞,0)∪(0,+∞)上的奇函數(shù),當(dāng)x∈(0,+∞)時,f(x)=ax+2lnx(a∈R).
(Ⅰ)求f(x)的解析式;
(Ⅱ)是否存在負(fù)實(shí)數(shù)a,使得當(dāng)x∈[-e,0)時,f(x)的最小值是4?如果存在,求出a的值;如果不存在,請說明理由;
(Ⅲ)對x∈D,如果函數(shù)F(x)的圖象在函數(shù)G(x)的圖象的下方(沒有公共點(diǎn)),則稱函數(shù) F(x)在D上被函數(shù)G(x)覆蓋,若函數(shù)f(x)在區(qū)間x∈(1,+∞)上被函數(shù)g(x)=x3覆蓋,求實(shí)數(shù)a的取值范圍.(注:e是自然對數(shù)的底數(shù),[ln(-x)]′=
1
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=ln(x+1)的定義域?yàn)?div id="xxpzhvj" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

采用系統(tǒng)抽樣方法,從123人中抽取一個容量為12的樣本,則抽樣距為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用反證法證明結(jié)論“a,b,c至少有一個是正數(shù)”時,應(yīng)假設(shè)
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二項(xiàng)式(
x
+
2
x
7的展開式中含x2的項(xiàng)的系數(shù)為
 

查看答案和解析>>

同步練習(xí)冊答案