已知函數(shù)f(x)=x3+ax2-9x-1(a<0),其導(dǎo)函數(shù)滿足:f(x)≥f(b)=-12.
求:(Ⅰ)a、b的值;
(Ⅱ)函數(shù)f(x)的單調(diào)遞減區(qū)間.

解:(Ⅰ)因?yàn)閒(x)=x3+ax2-9x-1,
所以f′(x)=3x2+2ax-9,
即當(dāng)x=-時,f′(x)取得最小值-9-,
由題意得-9-=-12,
?a=-3,b=-=1.
(Ⅱ)由(Ⅰ)a=-3,∴f(x)=x3-3x2-9x-1,
f′(x)=3x2-6x-9,
由于x∈(-1,3)時
f′(x)<0,
所以(-1,3)是f(x)的單調(diào)遞減區(qū)間.
分析:(I)由于f(x)=x3+ax2-9x-1,求導(dǎo)數(shù)f′(x)=3x2+2ax-9,利用二次函數(shù)的性質(zhì)研究其最小值,得出當(dāng)x=-時,f′(x)取得最小值-9-,從而列式求得a,b的值;
(II)求出函數(shù)的定義域,求出函數(shù)的導(dǎo)函數(shù),令導(dǎo)函數(shù)大于0求出x的范圍,寫出區(qū)間形式即得到函數(shù)的單調(diào)遞減區(qū)間.
點(diǎn)評:本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.求函數(shù)的單調(diào)區(qū)間的問題,一般求出導(dǎo)函數(shù),令導(dǎo)函數(shù)大于0求出x的范圍為單調(diào)遞增區(qū)間;令導(dǎo)函數(shù)小于0求出x的范圍為單調(diào)遞減區(qū)間;注意單調(diào)區(qū)間是函數(shù)定義域的子集.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案