已知函數(shù)
(Ⅰ)若的極值點,求實數(shù)的值;
(Ⅱ)若上為增函數(shù),求實數(shù)的取值范圍;
(Ⅲ)當時,方程有實根,求實數(shù)的最大值.

(Ⅰ)(Ⅱ)(Ⅲ)0

解析試題分析:(I)……2分
因為的極值點,所以,即
解得。經(jīng)檢驗,合題意……4分(沒有寫經(jīng)檢驗的減1分)
(II)因為函數(shù)上為增函數(shù),所以
上恒成立。
?當時,上恒成立,所以上為增函數(shù),故 符合題意。 ……………………6分                                   
?當時,由函數(shù)的定義域可知,必須有恒成立,
故只能,所以上恒成立。  
令函數(shù),其對稱軸為,
因為,所以,
要使上恒成立,
只要即可,即,
所以。
因為,所以
綜上所述,a的取值范圍為!8分
(Ⅲ)當時,方程可化為
問題轉(zhuǎn)化為上有解,即求函數(shù)的值域。
因為函數(shù),令函數(shù),………10分
,
所以當時,,從而函數(shù)上為增函數(shù),
時,,從而函數(shù)上為減函數(shù),
因此。
,所以,因此當時,b取得最大值0.  ………12分  
考點:函數(shù)導數(shù)的幾何意義及利用導數(shù)求極值最值
點評:本題中的不等式恒成立或方程有實根轉(zhuǎn)化為求構(gòu)造的新函數(shù)的最值問題,這是函數(shù)題中最常用的轉(zhuǎn)化方法

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)已知函數(shù),
(1)若,求的單調(diào)區(qū)間;
(2)當時,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)
已知函數(shù),,記
(Ⅰ)判斷的奇偶性,并證明;
(Ⅱ)對任意,都存在,使得,.若,求實數(shù)的值;
(Ⅲ)若對于一切恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

是定義在R上的奇函數(shù),且對任意,當時,都有.
(1)求證:R上為增函數(shù).
(2)若對任意恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)探究函數(shù)的最小值,并確定取得最小值時x的值.列表如下:

x

0.5
1
1.5
1.7
1.9
2
2.1
2.2
2.3
3
4
5
7

y

16
10
8.34
8.1
8.01
8
8.01
8.04
8.08
8.6
10
11.6
15.14

請觀察表中y值隨x值變化的特點,完成以下的問題.
(1)函數(shù)在區(qū)間(0,2)上遞減;函數(shù)在區(qū)間                     上遞增.當             時,                 .
(2)證明:函數(shù)在區(qū)間(0,2)遞減.
(3)思考:函數(shù)時,有最值嗎?是最大值還是最小值?此時x為何值?(直接回答結(jié)果,不需證明)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),且處取得極值.
(1)求的值;
(2)若當時,恒成立,求的取值范圍;
(3)對任意的是否恒成立?如果成立,給出證明,如果不成立,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)定義域為,且.
設點是函數(shù)圖像上的任意一點,過點分別作直線軸的垂線,垂足分別為

(1)寫出的單調(diào)遞減區(qū)間(不必證明);(4分)
(2)設點的橫坐標,求點的坐標(用的代數(shù)式表示);(7分)
(3)設為坐標原點,求四邊形面積的最小值.(7分)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題9分)已知函數(shù)。
(Ⅰ)若上的最小值是,試解不等式;
(Ⅱ)若上單調(diào)遞增,試求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題12分)(1)已知函數(shù),問方程在區(qū)間[-1,0]內(nèi)是否有
解,為什么?
(2)若方程在(0,1)內(nèi)恰有一解,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案