2.已知數(shù)列{an}滿足a1=9,an+1=an+2n+5;數(shù)列{bn}滿足b1=$\frac{1}{4}$,bn+1=$\frac{n+1}{n+2}$bn(n≥1).
(1)求an,bn;
(2)記數(shù)列{${\frac{b_n}{{\sqrt{a_n}}}}$}的前n項(xiàng)和為Sn,證明:$\frac{1}{12}$≤Sn<$\frac{1}{4}$.

分析 (1)利用數(shù)列的遞推關(guān)系,利用累加法和累積法進(jìn)行求解即可.
(2)求出數(shù)列{${\frac{b_n}{{\sqrt{a_n}}}}$}的通項(xiàng)公式,利用裂項(xiàng)法進(jìn)行求解,結(jié)合不等式的性質(zhì)進(jìn)行證明即可.

解答 解:(1)由an+1=an+2n+5得an+1-an=2n+5,
則a2-a1=7,
a3-a2=9,

an-1-an-2=2(n-2)+5,
an-an-1=2(n-1)+5=2n+3
等式兩邊同時(shí)相加得
an-a1=$\frac{(7+2n+3)}{2}$×(n-1)=(5+n)(n-1)=n2+4n-5,
則an=a1+n2+4n-5=n2+4n-5+9=n2+4n+4,
所以數(shù)列{an}的通項(xiàng)公式為${a_n}={({n+2})^2}$.
又∵${b_1}=\frac{1}{4}$,${b_{n+1}}=\frac{n+1}{n+2}{b_n}(n≥1)$,
∴$\frac{{{b_{n+1}}}}{b_n}=\frac{n+1}{n+2}$,∴$\frac{b_2}{b_1}=\frac{2}{3}$,$\frac{b_3}{b_2}=\frac{3}{4}$,$\frac{b_4}{b_3}=\frac{4}{5}$,…,$\frac{b_n}{{{b_{n-1}}}}=\frac{n}{n+1}$,
將上述(n-1)個(gè)式子相乘,得$\frac{{b{\;}_n}}{b_1}=\frac{2}{n+1}$,即${b_n}=\frac{1}{2n+2}(n∈{N^*})$.…(5分)
(2)∵$\frac{b_n}{{\sqrt{a_n}}}=\frac{1}{{({n+2})({2n+2})}}=\frac{1}{2}({\frac{1}{n+1}-\frac{1}{n+2}})$.
∵${S_n}=\frac{1}{2}[{({\frac{1}{2}-\frac{1}{3}})+({\frac{1}{3}-\frac{1}{4}})+…+({\frac{1}{n+1}-\frac{1}{n+2}})}]$=$\frac{1}{2}({\frac{1}{2}-\frac{1}{n+2}})=\frac{1}{4}-\frac{1}{2n+4}<\frac{1}{4}$,
$又∵{S_n}≥\frac{1}{2}({\frac{1}{2}-\frac{1}{3}})=\frac{1}{12}$,∴$\frac{1}{12}≤{S_n}<\frac{1}{4}.…({(10分)})$

點(diǎn)評(píng) 本題主要考查遞推數(shù)列的應(yīng)用以及數(shù)列求和,利用累加法,累積法,以及裂項(xiàng)法求出數(shù)列的通項(xiàng)公式是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=x-$\sqrt{1-2x}$.
(1)求函數(shù)f(x)的定義域;
(2)求函數(shù)f(x)的值域;
(3)用定義證明函數(shù)f(x)在其定義域上為單調(diào)增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知球O的半徑為1,A,B,C三點(diǎn)都在球面上,且OA,OB,OC兩兩垂直,則球心O到平面ABC的距離為$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.函數(shù)f(x)=ax2+bx+c(a>0,b,c∈R)的圖象過(guò)點(diǎn)(1,0),對(duì)任意x1∈[0,2],存在x2∈[0,2],使得f(x1)+f(x2)>$\frac{3}{2}$a,則$\frac{a}$的取值范圍是(-∞,-4+$\sqrt{2}$)∪(-$\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知α、β∈(0,π),且sin(α+β)=$\frac{5}{13}$,$tan\frac{α}{2}$=$\frac{1}{2}$.
(1)求sinα、cosα的值;
(2)求cosβ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知復(fù)數(shù)z=(k2-3k-4)+(k-1)i(k∈R):
(1)若復(fù)數(shù)z在復(fù)平面上對(duì)應(yīng)的點(diǎn)位于第二象限,求k的取值范圍;
(2)若復(fù)數(shù)z•i∈R,求復(fù)數(shù)z的模|z|?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=ln(x-1),g(x)=$\frac{{a({x-2})}}{x-1}$.
(1)討論函數(shù)G(x)=f(x)-g(x)的單調(diào)性;
(2)若數(shù)列{an}滿足a1=1,an+1=f(an+2).證明:對(duì)任意n∈N+,恒有$\frac{1}{n}≤{a_n}$≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.函數(shù)y=cosx的定義域?yàn)閇a,b],值域?yàn)閇-$\frac{1}{2}$,1],則b-a的最小值為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知f(x)=$\frac{sin(π-x)cos(2π-x)tan(x+π)}{{tan{{(-x-π)}_{\;}}sin(-x-π)}}$;
(1)化簡(jiǎn)f(x);
(2)若cos(x-$\frac{3π}{2}$)=$\frac{1}{5}$,x為第三象限角,求f(x)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案