分析 (1)通過(guò)求導(dǎo)可知函數(shù)G(x)=f(x)-g(x)的導(dǎo)函數(shù)表達(dá)式,進(jìn)而解不等式即得結(jié)論;
(2)通過(guò)數(shù)學(xué)歸納法可證明0<an≤1,利用(1)可知對(duì)任意n∈N*恒有$ln({n+1})>\frac{n}{n+1}$,進(jìn)而可得$\frac{1}{{{a_{n+1}}}}-\frac{1}{a_n}<1$,并項(xiàng)相加、放縮即得結(jié)論.
解答 (1)解:依題意可知:x>1,且${G^'}(x)=\frac{{x-({1+a})}}{{{{({x-1})}^2}}}$,
當(dāng)a≤0時(shí),G′(x)≥0,故G(x)在(1,+∞)上是增加的;
當(dāng)a>0時(shí),x∈(1,1+a)時(shí),G′(x)≤0,此時(shí)G(x)是減少的,
當(dāng)x∈(1+a,+∞)時(shí),G′(x)≥0,此時(shí)G(x)是增加的;
(2)證明:依題意:an+1=ln(an+1),
先用數(shù)學(xué)歸納法證明0<an≤1,
①易知n=1時(shí),0<an≤1成立,
②假設(shè)n=k(k∈N*)時(shí),有0<ak≤1成立,
則0<ln(ak+1)≤ln2<1,則0<ak+1<1,
故n=k+1時(shí),0<an≤1也成立,
綜上知0<an≤1對(duì)任意n∈N*恒成立.
由(1)知當(dāng)a=1時(shí),$G(x)=f(x)-g(x)=ln({x-1})-\frac{x-2}{x-1}$在(2,+∞)上是增加的,
又∵G(2)=0,
∴對(duì)任意x≥2恒有$ln({x-1})≥\frac{x-2}{x-1}$,即任意n∈N*恒有$ln({n+1})>\frac{n}{n+1}$,
∵an+1=ln(an+1),$ln({{a_n}+1})>\frac{{{a_{{n_{\;}}}}}}{{{a_n}+1}}$,
∴$\frac{1}{{{a_{n+1}}}}<\frac{1}{a_n}+1$,即$\frac{1}{{{a_{n+1}}}}-\frac{1}{a_n}<1$,
故n>1時(shí),有$\frac{1}{a_2}-\frac{1}{a_1}+\frac{1}{a_3}-\frac{1}{a_2}+…+\frac{1}{a_n}-\frac{1}{{{a_{n-1}}}}<n-1$,
所以$\frac{1}{a_n}<n$,即${a_n}>\frac{1}{n}$,
又∵當(dāng)n=1時(shí),an=1,
∴${a_n}≥\frac{1}{n}$,
故$\frac{1}{n}≤{a_n}≤1$成立.
點(diǎn)評(píng) 本題是一道關(guān)于數(shù)列與不等式的綜合題,涉及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、數(shù)學(xué)歸納法等基礎(chǔ)知識(shí),注意解題方法的積累,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 8 | B. | -8 | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -4 | B. | -1 | C. | 1 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 在數(shù)列{an}中,a1=1,an=$\frac{1}{2}$(an-1+$\frac{1}{{a}_{n-1}}$)(n∈N*),由其歸納出{an}的通項(xiàng)公式 | |
B. | 由平面三角形的性質(zhì),推測(cè)空間四面體性質(zhì) | |
C. | 兩條直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ),如果∠A和∠B是兩條平行直線(xiàn)的同旁?xún)?nèi)角,則∠A+∠B=180° | |
D. | 某校高二共10個(gè)班,1班51人,2班53人,3班52人,由此推測(cè)各班都超過(guò)50人 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com