18.離心率為2的雙曲線$M:{x^2}-\frac{y^2}{m}=1({m>0})$上一點P到左、右焦點F1,F(xiàn)2的距離之和為10,則$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$=18.

分析 利用雙曲線的定義,結合P到左、右焦點F1,F(xiàn)2的距離之和為10,求出|PF1|=6,|PF2|=4,利用余弦定理求出cos∠F1PF2,即可得出結論.

解答 解:不妨設|PF1|>|PF2|.
由題意,$\frac{\sqrt{1+m}}{1}$=2,∴m=3,
∴|PF1|-|PF2|=2,
∵|PF1|+|PF2|=10,
∴|PF1|=6,|PF2|=4,
∵|F1F2|=4,
∴cos∠F1PF2=$\frac{3}{4}$
∴$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$=|PF1||PF2|cos∠F1PF2=18.
故答案為:18.

點評 本題考查雙曲線的定義,考查余弦定理的運用,考查向量的數(shù)量積公式,考查學生的計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

15.(1)已知f(x)是一次函數(shù),且滿足3f(x+1)-2f(x-1)=2x+17,求f(x)的解析式.
(2)定義在(-1,1)內(nèi)的函數(shù)f(x)滿足2f(x)-f(-x)=lg(x+1),求函數(shù)f(x)的解析式.
(3)已知f(2x+1)=4x2+8x+3,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.設函數(shù)f(x)=ex-a(x+1)(e是自然對數(shù)的底數(shù),e=2.71828…).
(1)若f'(0)=0,求實數(shù)a的值,并求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設g(x)=f(x)+$\frac{a}{e^x}$,且A(x1,g(x1)),B(x2,g(x2))(x1<x2)是曲線y=g(x)上任意兩點,若對任意的a≤-1,恒有g(x2)-g(x1)>m(x2-x1)成立,求實數(shù)m的取值范圍;
(3)求證:1n+3n+…+(2n-1)n<$\frac{{\sqrt{e}}}{e-1}{(2n)^n}(n∈{N^*})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.設函數(shù)f(x)=$\frac{{a}^{2x}-(t-1)}{{a}^{x}}$ (a>0且a≠1)是定義域為R的奇函數(shù).
(Ⅰ)求t的值;
(Ⅱ)若函數(shù)f(x)的圖象過點(1,$\frac{3}{2}$),是否存在正數(shù)m(m≠1),使函數(shù)g(x)=logm[a2x+a-2x-mf(x)]在[1,log23]上的最大值為0,若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知函數(shù)$f(x)=lnx+\frac{1}{x}$,若對任意的x∈[1,+∞)及m∈[1,2],不等式f(x)≥m2-2tm+2恒成立,則實數(shù)t的取值范圍是[$\frac{5}{4}$,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知復數(shù)z1=$\frac{3}{a+2}$+(a2-3)i,若虛數(shù)z1是實系數(shù)一元二次方程x2-6x+m=0的根,則實數(shù)m的值為( 。
A.5B.6C.12D.13

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.i為虛數(shù)單位,復數(shù)z滿足z(1+i)=i,則|z|=( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.1D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知{an}為等差數(shù)列,若a1+a5+a9=5π,則cos(a2+a8)為-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.將曲線C:(x-2)2+y2=4圖象上每一點的橫坐標縮短為原來的$\frac{1}{2}$,再向左平移1個單位,得到曲線C1的圖象,若曲線C1上存在點P,使得點P到點$F(0,\sqrt{3})$的距離與點P到直線$l:y=\sqrt{2}x+2\sqrt{3}$的距離相等,則點P的坐標為($\frac{\sqrt{3}}{3}$,-$\frac{2\sqrt{6}}{3}$)或(-$\frac{\sqrt{3}}{3}$,$\frac{2\sqrt{6}}{3}$).

查看答案和解析>>

同步練習冊答案