精英家教網 > 高中數學 > 題目詳情

【題目】如圖,斜率為的直線交拋物線兩點,已知點的橫坐標比點的橫坐標大4,直線交線段于點,交拋物線于點

1)若點的橫坐標等于0,求的值;

2)求的最大值.

【答案】18;2

【解析】

1)先根據點的坐標得的值,然后將直線的方程與拋物線方程聯(lián)立,構建關于的二次方程,最后利用弦長公式求解;(2)先設出直線的方程,與拋物線方程聯(lián)立,構建關于的二次方程,再根據點的橫坐標滿足的條件可求得滿足的關系式將直線的方程聯(lián)立,可求得點的橫坐標,將直線的方程與拋物線方程聯(lián)立,構建關于的二次方程,結合根與系數的關系、弦長公式、二次函數的最值即可求解.

解:(1, 聯(lián)立得,

,則

2)設的方程為,代入,得,

,

, 聯(lián)立得,

.所以,當時,取得最大值

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知橢圓的短軸長為2,離心率為

1)求橢圓E的標準方程;

2)若直線l與橢圓E相切于點P(點P在第一象限內),與圓相交于點A,B,且,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,已知底面是邊長為2的菱形,平面,,分別是棱,的中點.

1)求證:平面;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數,.

1)討論上的單調性;

2)當時,若存在正實數,使得對,都有,求的取值范圍..

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《周禮夏官馬質》中記載馬量三物:一日戎馬,二日田馬,三日駑馬,其意思為馬按照品種可以分為三個等級,一等馬為戎馬,二等馬為田馬,三等馬為駑馬.假設在唐朝的某個王爺要將7匹馬(戎馬3匹,田馬、駑馬各2匹)賞賜給甲、乙、丙3人,每人至少2匹,則甲和乙都得到一等馬的分法總數為_____

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C的中心在坐標原點,焦點在x軸上,它的一個頂點恰好是拋物線的焦點,離心率為.

(Ⅰ)求橢圓C的標準方程;

(Ⅱ)過橢圓C的右焦點F作直線l交橢圓CA、B兩點,交y軸于M點,若,,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為弘揚我國古代的六藝文化,某夏令營主辦單位計劃利用暑期開設”“”“”“”“”“六門體驗課程,每周一門,連續(xù)開設六周.課程不排在第一周,課程不排在最后一周的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,曲線C的參數方程為θ為參數),直線l的參數方程為m為參數),以平面直角坐標系的原點O為極點,x軸正半軸為極軸,建立坐標系.

1)求曲線C的極坐標方程;

2)直線l與曲線C相交于M,N兩點,若,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱柱中,四邊形為菱形,,為等腰直角三角形,,,,則異面直線AB所成角的余弦值為_______.

查看答案和解析>>

同步練習冊答案